Explore les méthodes de classification des documents, y compris k-Nearest-Neighbors, Naïve Bayes Classifier, les modèles de transformateurs, et l'attention multi-têtes.
Explore l'extraction de connaissances à partir du texte, couvrant des concepts clés tels que l'extraction de phrases clés et la reconnaissance d'entités nommées.
Présente les bases du traitement de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets.
Explore le traitement des données texte, en dérivant des ensembles de données propres à partir de textes non structurés, et diverses techniques d'analyse de texte.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Introduit le classificateur Naive Bayes, qui couvre les hypothèses d'indépendance, les probabilités conditionnelles et les applications dans la classification des documents et le diagnostic médical.