In mathematics, a hereditary property is a property of an object that is inherited by all of its subobjects, where the meaning of subobject depends on the context. These properties are particularly considered in topology and graph theory, but also in set theory.
In topology, a topological property is said to be hereditary if whenever a topological space has that property, then so does every subspace of it. If the latter is true only for closed subspaces, then the property is called weakly hereditary or
closed-hereditary.
For example, second countability and metrisability are hereditary properties. Sequentiality and Hausdorff compactness are weakly hereditary, but not hereditary. Connectivity is not weakly hereditary.
If P is a property of a topological space X and every subspace also has property P, then X is said to be "hereditarily P".
The notion of hereditary properties occurs throughout combinatorics and graph theory, although they are known by a variety of names. For example, in the context of permutation patterns, hereditary properties are typically called permutation classes.
In graph theory, a hereditary property is a property of a graph which also holds for (is "inherited" by) its induced subgraphs. Alternately, a hereditary property is preserved by the removal of vertices. A graph class is called hereditary if it is closed under induced subgraphs. Examples of hereditary graph classes are independent graphs (graphs with no edges), which is a special case (with c = 1) of being c-colorable for some number c, being forests, planar, complete, complete multipartite etc.
In some cases, the term "hereditary" has been defined with reference to graph minors, but this is more properly called a minor-hereditary property. The Robertson–Seymour theorem implies that a minor-hereditary property may be characterized in terms of a finite set of forbidden minors.
The term "hereditary" has been also used for graph properties that are closed with respect to taking subgraphs.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In set theory, a hereditary set (or pure set) is a set whose elements are all hereditary sets. That is, all elements of the set are themselves sets, as are all elements of the elements, and so on. For example, it is vacuously true that the empty set is a hereditary set, and thus the set containing only the empty set is a hereditary set. Similarly, a set that contains two elements: the empty set and the set that contains only the empty set, is a hereditary set.
Un cographe est, en théorie des graphes, un graphe qui peut être généré par complémentation et union disjointe à partir du graphe à un nœud. La plupart des problèmes algorithmiques peuvent être résolus sur cette classe en temps polynomial, et même linaire, du fait de ses propriétés structurelles. Cette famille de graphe a été introduite par plusieurs auteurs indépendamment dans les années 1970 sous divers noms, notamment D*-graphes, hereditary Dacey graphs et 2-parity graphs.
thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
Couvre le traitement graphique en mettant l'accent sur Oracle Labs PGX, en discutant de l'analyse graphique, des bases de données, des algorithmes et des défis analytiques distribués.
Explore l'omniprésence des graphiques dans les données et les analyses modernes, en mettant l'accent sur le changement dans la perception des organisations des technologies graphiques.
Explore le lemme de régularité Szemerédi, la régularité électronique dans les graphes bipartites, la structure des supergraphes et les techniques d'induction.
This thesis is devoted to crossing patterns of edges in topological graphs. We consider the following four problems: A thrackle is a graph drawn in the plane such that every pair of edges meet exactly once: either at a common endpoint or in a proper crossi ...
In this paper, we prove several extremal results for geometrically defined hypergraphs. In particular, we establish an improved lower bound, single exponentially decreasing in k, on the best constant delta > 0 such that the vertex classes P-1,...,P-k of ev ...
Society for Industrial and Applied Mathematics2016
A sparsifier of a graph G (Bencztir and Karger; Spielman and Teng) is a sparse weighted subgraph (G) over tilde that approximately retains the same cut structure of G. For general graphs, non-trivial sparsification is possible only by using weighted graphs ...