Publications associées (295)

The spectral bias of polynomial neural networks

Volkan Cevher, Grigorios Chrysos, Leello Tadesse Dadi, Moulik Choraria

Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a spectral bias ...
2022

In vivo magnetic resonance P-31-Spectral Analysis With Neural Networks: 31P-SPAWNN

Lijing Xin, François Lazeyras, Sébastien Courvoisier, Julien Songeon

Purpose: We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 (P-31) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the per ...
WILEY2022

Correlation between conduction velocity and frequency analysis in patients with atrial fibrillation using high-density charge mapping

Jean-Marc Vesin, Lam Dang

Spectral analysis of atrial signals has been used to identify regions of interest in atrial fibrillation (AF). However, the relationship to the atrial substrate is unclear. In this study, we compare regions with dominant frequency (DF), simultaneously dete ...
SPRINGER HEIDELBERG2022

Level statistics of the one-dimensional ionic Hubbard model

In this paper we analyze the spectral level statistics of the one-dimensional ionic Hubbard model, the Hubbard model with an alternating on-site potential. In particular, we focus on the statistics of the gap ratios between consecutive energy levels. This ...
2022

Construction of optimal spectral methods in phase retrieval

Florent Gérard Krzakala, Lenka Zdeborová

We consider the phase retrieval problem, in which the observer wishes to recover a n-dimensional real or complex signal X⋆ from the (possibly noisy) observation of |ΦX⋆|, in which Φ is a matrix of size m×n. We consider a \emph{high-dimensional} setting whe ...
2021

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.