Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Stochastic Maximum Likelihood (SML) is a popular direction of arrival (DOA) estimation technique in array signal processing. It is a parametric method that jointly estimates signal and instrument noise by maximum likelihood, achieving excellent statistical performance. Some drawbacks are the computational overhead as well as the limitation to a point-source data model with fewer sources than sen- sors. In this work, we propose a Sieved Maximum Likelihood (SiML) method. It uses a general functional data model, allowing an unrestricted number of arbitrarily-shaped sources to be recovered. To this end, we leverage functional analysis tools and express the data in terms of an infinite-dimensional sampling operator acting on a Gaussian random function. We show that SiML is computationally more efficient than traditional SML, resilient to noise, and results in much better accuracy than spectral-based methods.
Matthieu Wyart, Umberto Maria Tomasini, Antonio Sclocchi