En mathématiques, le théorème de Cauchy–Hadamard est un résultat d'analyse complexe qui décrit le rayon de convergence d'une série entière. Il a été publié en 1821 par Cauchy mais est resté relativement méconnu jusqu'à sa redécouverte par Hadamard, qui le publia une première fois en 1888 puis l'inclut, en 1892, dans sa thèse. En particulier, si la suite (a) est non bornée alors R = 0 – c'est-à-dire que la série diverge partout ailleurs qu'en 0 – et si cette suite converge vers 0 alors R = +∞ – c'est-à-dire que la série converge sur le plan complexe tout entier. Si α est un multi-indice, c'est-à-dire un n-uplet d'entiers naturels, notons |α| = α + ... + α.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.