Soit G un groupe, au sens mathématique. Le sous-groupe de Fitting de G est un certain sous-groupe caractéristique de G qui intervient de façon importante dans la partie de la théorie des groupes finis appelée analyse locale. Le théorème de Fitting, énoncé et démontré par Hans Fitting en 1938, peut s'énoncer comme suit : Si H1, ...., Hn sont des sous-groupes normaux nilpotents de G, de classes de nilpotence respectives c1, ...., cn, alors le sous-groupe de G engendré par H1, ... , Hn est lui aussi un sous-groupe normal nilpotent de G et sa classe de nilpotence est inférieure ou égale à la somme c1 + .... + cn de celles des Hi. Dans ce qui suit, on donne une démonstration dans le langage des commutateurs de sous-groupes. On peut rédiger la démonstration en donnant la préférence aux commutateurs d'éléments. Il résulte du théorème de Fitting que si le groupe G est fini, le sous-groupe F(G) de G engendré par les sous-groupes normaux nilpotents de G est lui-même normal et nilpotent. Il est clair que F(G) est alors le plus grand (relativement à l'inclusion) des sous-groupes normaux nilpotents de G et que c'est un sous-groupe caractéristique de G. On pose dès lors la définition suivante : Si G est un groupe fini, on appelle sous-groupe de Fitting de G et on note F(G) ou Fit(G) le plus grand (relativement à l'inclusion) des sous-groupes normaux nilpotents de G. On montre que si G est un groupe fini et que, pour tout diviseur premier p de l'ordre de G, on désigne par Op(G) l'intersection de tous les p-sous-groupes de Sylow de G (intersection qui est aussi le plus grand p-sous-groupe normal de G), alors F(G) est le produit direct des Op(G), où p parcourt les diviseurs premiers de l'ordre de G. Prouvons que si le groupe G est infini, il n'a pas forcément un plus grand sous-groupe normal nilpotent. On sait que le sous-groupe du groupe général linéaire GL(K) formé des matrices triangulaires supérieures avec des 1 sur la diagonale principale est nilpotent de classe n – 1. Il existe donc une suite infinie (Gn) telle que, pour chaque n, Gn soit un groupe nilpotent de classe n.