Le zéro absolu est la température la plus basse qui puisse exister. Il correspond à la limite basse de l'échelle de température thermodynamique, soit l'état dans lequel l'enthalpie et l'entropie d'un gaz parfait atteint sa valeur minimale, notée 0. Cette température théorique est déterminée en extrapolant la loi des gaz parfaits : selon un accord international, la valeur du zéro absolu est fixée à (Celsius) ou (Fahrenheit). Par définition, les échelles Kelvin et Rankine prennent le zéro absolu comme valeur 0. À noter que l'échelle Kelvin ne peut aller dans les nombres négatifs. En physique quantique, la matière au zéro absolu se trouve dans son état fondamental, point d'énergie interne minimale. Les lois de la thermodynamique impliquent que le zéro absolu ne peut pas être atteint en utilisant uniquement des moyens thermodynamiques : la température de la substance refroidie se rapproche asymptotiquement de celle de l'agent de refroidissement. Un système qui se trouve au zéro absolu possède en mécanique quantique l'énergie du point zéro, soit l'énergie de son état fondamental au zéro absolu. L'énergie cinétique de l'état fondamental ne peut être éliminée. Des scientifiques ont réussi à atteindre des températures proches du zéro absolu, où la matière présentait des effets quantiques tels que la supraconductivité ou la superfluidité. vignette|upright=1.3|Graphique de la pression en fonction de la température pour 3 gaz différents et leur extrapolation vers le zéro absolu. En 1702, l'état du zéro absolu a été proposé pour la première fois par Guillaume Amontons, physicien et académicien français, qui travaillait sur la relation entre température et pression dans les gaz, même s'il n'avait pas à sa disposition de thermomètre précis. Bien que ses résultats soient qualitatifs, il établit que la pression d'une quantité donnée de gaz confinée dans un volume donné augmente d'à peu près un tiers lorsqu'il passe d'une température « froide » à celle de l'ébullition de l'eau, ce qui l'amène à supposer qu'une réduction suffisante de température entraînerait une absence de pression.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
PHYS-106(a): General physics : thermodynamics
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Afficher plus
Séances de cours associées (39)
Équations optiques de Bloch
Couvre la dérivation et les solutions des équations optiques de Bloch pour un système quantique à deux niveaux.
Température : Définition et mesure
Couvre la définition et la mesure de la température, y compris l'échelle de Kelvin et la relation entre les échelles Celsius et Kelvin.
Carnot Cycle : Optimisation de l'efficacité
Explore l'efficacité du cycle Carnot et le compare à un moteur auto-réversible.
Afficher plus
Publications associées (75)

Absolute energy levels of liquid water from many-body perturbation theory with effective vertex corrections

Alfredo Pasquarello, Aleksei Tal, Thomas Bischoff

We demonstrate the importance of addressing the F vertex and thus going beyond the GW approximation for achieving the energy levels of liquid water in manybody perturbation theory. In particular, we consider an effective vertex function in both the polariz ...
Natl Acad Sciences2024

On the similarity between aortic and carotid pressure diastolic decay: a mathematical modelling study

Nikolaos Stergiopoulos, Georgios Rovas, Sokratis Anagnostopoulos, Vasiliki Bikia

Aortic diastolic pressure decay (DPD) has been shown to have considerable pathophysiological relevance in the assessment of vascular health, as it is significantly affected by arterial stiffening. Nonetheless, the aortic pressure waveform is rarely availab ...
NATURE PORTFOLIO2023

Spectroscopy and dynamics at liquid water interfaces

Bruno Credidio

This thesis is a detailed description of three experimental investigations on aqueous interfaces. All projects made use of the microjet technology or the more recently developed flat-jet technique which enables the implementation of liquid water in vacuum ...
EPFL2022
Afficher plus
Concepts associés (32)
Température
La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
Température thermodynamique
La température thermodynamique est une formalisation de la notion expérimentale de température et constitue l’une des grandeurs principales de la thermodynamique. Elle est intrinsèquement liée à l'entropie. Usuellement notée , la température thermodynamique se mesure en kelvins (symbole K). Encore souvent qualifiée de « température absolue », elle constitue une mesure absolue parce qu’elle traduit directement le phénomène physique fondamental qui la sous-tend : l’agitation des constituant la matière (translation, vibration, rotation, niveaux d'énergie électronique).
Électron
L'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.