In statistics, the Q-function is the tail distribution function of the standard normal distribution. In other words, is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, is the probability that a standard normal random variable takes a value larger than . If is a Gaussian random variable with mean and variance , then is standard normal and where . Other definitions of the Q-function, all of which are simple transformations of the normal cumulative distribution function, are also used occasionally. Because of its relation to the cumulative distribution function of the normal distribution, the Q-function can also be expressed in terms of the error function, which is an important function in applied mathematics and physics. Formally, the Q-function is defined as Thus, where is the cumulative distribution function of the standard normal Gaussian distribution. The Q-function can be expressed in terms of the error function, or the complementary error function, as An alternative form of the Q-function known as Craig's formula, after its discoverer, is expressed as: This expression is valid only for positive values of x, but it can be used in conjunction with Q(x) = 1 − Q(−x) to obtain Q(x) for negative values. This form is advantageous in that the range of integration is fixed and finite. Craig's formula was later extended by Behnad (2020) for the Q-function of the sum of two non-negative variables, as follows: The Q-function is not an elementary function. However, the Borjesson-Sundberg bounds, where is the density function of the standard normal distribution, become increasingly tight for large x, and are often useful. Using the substitution v =u2/2, the upper bound is derived as follows: Similarly, using and the quotient rule, Solving for Q(x) provides the lower bound. The geometric mean of the upper and lower bound gives a suitable approximation for : Tighter bounds and approximations of can also be obtained by optimizing the following expression For , the best upper bound is given by and with maximum absolute relative error of 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.