Résumé
In physics, a free surface is the surface of a fluid that is subject to zero parallel shear stress, such as the interface between two homogeneous fluids. An example of two such homogeneous fluids would be a body of water (liquid) and the air in the Earth's atmosphere (gas mixture). Unlike liquids, gases cannot form a free surface on their own. Fluidized/liquified solids, including slurries, granular materials, and powders may form a free surface. A liquid in a gravitational field will form a free surface if unconfined from above. Under mechanical equilibrium this free surface must be perpendicular to the forces acting on the liquid; if not there would be a force along the surface, and the liquid would flow in that direction. Thus, on the surface of the Earth, all free surfaces of liquids are horizontal unless disturbed (except near solids dipping into them, where surface tension distorts the surface in a region called the meniscus). In a free liquid that is not affected by outside forces such as a gravitational field, internal attractive forces only play a role (e.g. Van der Waals forces, hydrogen bonds). Its free surface will assume the shape with the least surface area for its volume: a perfect sphere. Such behaviour can be expressed in terms of surface tension. It can be demonstrated experimentally by observing a large globule of oil placed below the surface of a mixture of water and alcohol having the same density so the oil has neutral buoyancy. Flatness refers to the shape of a liquid's free surface. On Earth, the flatness of a liquid is a function of the curvature of the planet, and from trigonometry, can be found to deviate from true flatness by approximately 19.6 nanometers over an area of 1 square meter, a deviation which is dominated by the effects of surface tension. This calculation uses Earth's mean radius at sea level, however a liquid will be slightly flatter at the poles. Over large distances or planetary scale, the surface of an undisturbed liquid tends to conform to equigeopotential surfaces; for example, mean sea level follows approximately the geoid.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

MOOCs associés

Chargement