COM-502: Dynamical system theory for engineersLinear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
MATH-329: Continuous optimizationThis course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-106(e): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
ME-474: Numerical flow simulationThis course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
MATH-251(c): Numerical analysisLe cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
PHYS-210: Physique numérique (pour SPH)Aborder, formuler et résoudre des problèmes de physique en utilisant des méthodes numériques élémentaires. Comprendre les avantages et les limites de ces méthodes (stabilité, convergence). Illustrer d