On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Résumé
"Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I" ("On Formally Undecidable Propositions of Principia Mathematica and Related Systems I") is a paper in mathematical logic by Kurt Gödel. Submitted November 17, 1930, it was originally published in German in the 1931 volume of Monatshefte für Mathematik. Several English translations have appeared in print, and the paper has been included in two collections of classic mathematical logic papers. The paper contains Gödel's incompleteness theorems, now fundamental results in logic that have many implications for consistency proofs in mathematics. The paper is also known for introducing new techniques that Gödel invented to prove the incompleteness theorems.
The main results established are Gödel's first and second incompleteness theorems, which have had an enormous impact on the field of mathematical logic. These appear as theorems VI and XI, respectively, in the paper.
In order to prove these results, Gödel introduced a method now known as Gödel numbering. In this method, each sentence and formal proof in first-order arithmetic is assigned a particular natural number. Gödel shows that many properties of these proofs can be defined within any theory of arithmetic that is strong enough to define the primitive recursive functions. (The contemporary terminology for recursive functions and primitive recursive functions had not yet been established when the paper was published; Gödel used the word rekursiv ("recursive") for what are now known as primitive recursive functions.) The method of Gödel numbering has since become common in mathematical logic.
Because the method of Gödel numbering was novel, and to avoid any ambiguity, Gödel presented a list of 45 explicit formal definitions of primitive recursive functions and relations used to manipulate and test Gödel numbers. He used these to give an explicit definition of a formula Bew() that is true if and only if x is the Gödel number of a sentence φ and there exists a natural number that is the Gödel number of a proof of φ.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories of the natural numbers—specifically those theories that are strong enough to represent all computable functions. The sentences whose existence is secured by the diagonal lemma can then, in turn, be used to prove fundamental limitative results such as Gödel's incompleteness theorems and Tarski's undefinability theorem.
En logique mathématique une théorie arithmétique est appelée théorie ω-cohérente (oméga-cohérente) quand, pour toute propriété P des nombres entiers que l'on peut exprimer dans le langage de la théorie, si pour chaque entier n, P(n) est démontrable dans la théorie, alors ¬∀x P(x) n'est pas démontrable dans la théorie (¬ pour la négation, ∀ pour la quantification universelle, « pour tout »). Quand on prend pour P un énoncé clos (qui ne dépend pas de x) on retrouve la définition de la cohérence, appelée parfois dans ce contexte cohérence simple, qui est donc conséquence de l'ω-cohérence.
NOTOC En logique mathématique, le théorème de Tarski, ou théorème de non définissabilité de Tarski, s'énonce informellement ainsi :On ne peut définir dans le langage de l'arithmétique la vérité des énoncés de ce langage. On s'intéresse ici aux formules du premier ordre sur le langage « 0, s, +, ×, ≤ » vraies sur les entiers. Il s'agit de l'arithmétique vraie (ou la vérité dans N : les nombres entiers positifs). On suppose que le langage est récursif : ce qui est le cas quand les symboles primitifs, « 0, s, +, ×, ≤ » pour l'arithmétique de Peano, sont en nombre fini.
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
In computability theory a variety of combinatorial systems are encountered (word problems, production systems) that exhibit undecidability properties. Here we seek such structures in the realm of Analysis, more specifically in the area of Fourier Analysis. ...
Failure restoration at the IP layer in IP-over-WDM networks requires to map the IP topology on the WDM topology in such a way that a failure at the WDM layer leaves the IP topology connected. Such a mapping is called survivable. Finding a survivable mappin ...
The emergence of Intelligent Transportation Systems and the associated technologies has increased the need for complex models and algorithms. Namely, real-time information systems, directly influencing transportation demand, must be supported by detailed b ...