Concept

Blitter

Résumé
A blitter is a circuit, sometimes as a coprocessor or a logic block on a microprocessor, dedicated to the rapid movement and modification of data within a computer's memory. A blitter can copy large quantities of data from one memory area to another relatively quickly, and in parallel with the CPU, while freeing up the CPU's more complex capabilities for other operations. A typical use for a blitter is the movement of a bitmap, such as windows and fonts in a graphical user interface or images and backgrounds in a 2D video game. The name comes from the bit blit operation of the 1973 Xerox Alto, which stands for bit-block transfer. A blit operation is more than a memory copy, because it can involve data that's not byte aligned (hence the bit in bit blit), handling transparent pixels (pixels which should not overwrite the destination), and various ways of combining the source and destination data. Blitters have largely been superseded by programmable graphics processing units. In computers without hardware accelerated raster graphics, which includes most 1970s and 1980s home computers and IBM PC compatibles through the mid-1990s, the frame buffer is commonly stored in CPU-accessible memory. Drawing is accomplished by updating the frame buffer via software. For basic graphics routines, like compositing a smaller image into a larger one (such as for a video game) or drawing a filled rectangle, large amounts of memory need to be manipulated, and many cycles are spent fetching and decoding short loops of load/store instructions. For CPUs without caches, the bus requirement for instructions is as significant as data. To reduce the size of the frame buffer, a single byte may not necessarily correspond to a pixel, but contain 8 single-bit pixels, 4 two-bit pixels, or a pair of 4-bit pixels. Manipulating packed pixels requires extra shifting and masking operations on the CPU. Blitters were developed to offload repetitive tasks of copying data or filling blocks of memory faster than possible by the CPU.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.