PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
MATH-516: Applied statisticsThe course will provide an overview of everyday challenges in applied statistics through case studies. Students will learn how to use core statistical methods and their extensions, and will use comput
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.