Résumé
In sociology and statistics research, snowball sampling (or chain sampling, chain-referral sampling, referral sampling) is a nonprobability sampling technique where existing study subjects recruit future subjects from among their acquaintances. Thus the sample group is said to grow like a rolling snowball. As the sample builds up, enough data are gathered to be useful for research. This sampling technique is often used in hidden populations, such as drug users or sex workers, which are difficult for researchers to access. As sample members are not selected from a sampling frame, snowball samples are subject to numerous biases. For example, people who have many friends are more likely to be recruited into the sample. When virtual social networks are used, then this technique is called virtual snowball sampling. It was widely believed that it was impossible to make unbiased estimates from snowball samples, but a variation of snowball sampling called respondent-driven sampling has been shown to allow researchers to make asymptotically unbiased estimates from snowball samples under certain conditions. Snowball sampling and respondent-driven sampling also allows researchers to make estimates about the social network connecting the hidden population. Snowball sampling uses a small pool of initial informants to nominate, through their social networks, other participants who meet the eligibility criteria and could potentially contribute to a specific study. The term "snowball sampling" reflects an analogy to a snowball increasing in size as it rolls downhill. Draft a participation program (likely to be subject to change, but indicative). Approach stakeholders and ask for contacts. Gain contacts and ask them to participate. Community issues groups may emerge that can be included in the participation program. Continue the snowballing with contacts to gain more stakeholders if necessary. Ensure a diversity of contacts by widening the profile of persons involved in the snowballing exercise.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.