In statistics, explained variation measures the proportion to which a mathematical model accounts for the variation (dispersion) of a given data set. Often, variation is quantified as variance; then, the more specific term explained variance can be used. The complementary part of the total variation is called unexplained or residual variation. Following Kent (1983), we use the Fraser information (Fraser 1965) where is the probability density of a random variable , and with () are two families of parametric models. Model family 0 is the simpler one, with a restricted parameter space . Parameters are determined by maximum likelihood estimation, The information gain of model 1 over model 0 is written as where a factor of 2 is included for convenience. Γ is always nonnegative; it measures the extent to which the best model of family 1 is better than the best model of family 0 in explaining g(r). Assume a two-dimensional random variable where X shall be considered as an explanatory variable, and Y as a dependent variable. Models of family 1 "explain" Y in terms of X, whereas in family 0, X and Y are assumed to be independent. We define the randomness of Y by , and the randomness of Y, given X, by . Then, can be interpreted as proportion of the data dispersion which is "explained" by X. Fraction of variance unexplained The fraction of variance unexplained is an established concept in the context of linear regression. The usual definition of the coefficient of determination is based on the fundamental concept of explained variance. Let X be a random vector, and Y a random variable that is modeled by a normal distribution with centre . In this case, the above-derived proportion of explained variation equals the squared correlation coefficient . Note the strong model assumptions: the centre of the Y distribution must be a linear function of X, and for any given x, the Y distribution must be normal. In other situations, it is generally not justified to interpret as proportion of explained variance.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.