Concept

Analyse en composantes principales

Résumé
L'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux. Elle permet au statisticien de résumer l'information en réduisant le nombre de variables. Il s'agit d'une approche à la fois géométrique (les variables étant représentées dans un nouvel espace, selon des directions d'inertie maximale) et statistique (la recherche portant sur des axes indépendants expliquant au mieux la variabilité — la variance — des données). Lorsqu'on veut compresser un ensemble de N variables aléatoires, les
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement