Concept

Distinction type-jeton

Concepts associés (4)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Formule logique
En logique on dit d’une suite finie de lettres qu’elle est une formule, ou parfois formule bien formée, d'un langage logique donné lorsqu’elle peut être construite en appliquant une combinaison des règles de la grammaire formelle associée, on parle de la syntaxe du langage. Informellement les formules sont les assemblages de lettres auxquels il est possible de donner une signification en termes de valeur de vérité (Vrai, ou Faux). Les formules logiques sont l'équivalent des phrases du langage naturel.
Abstrait et concret
Abstrait et concret sont des classifications qui dénotent si un terme décrit un objet sans ou avec référent physique. Elles sont le plus couramment utilisées en philosophie et en sémantique. Les objets abstraits sont parfois appelés abstracta (sing. abstractum) et les objets concrets concreta (sing. concretum). Un objet abstrait est un objet qui n'existe pas en aucun moment ou endroit particulier mais existe plutôt comme type de chose, c'est-à-dire une idée ou abstraction.
Langage formel
Un langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.