Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique le classificateur K-Nearest Neighbors, en attribuant des étiquettes basées sur les points les plus proches et en lissant le bruit dans les étiquettes.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Explore les distances sur les graphiques, les normes de coupe, les arbres de couverture, les modèles de blocs, les métriques, les normes et les ERGM dans l'analyse des données du réseau.
Couvre le classificateur k-NN, la reconnaissance numérique manuscrite, la réduction de données, les applications, la construction de graphes, les limitations et la malédiction de la dimensionnalité.
Explore les méthodes et applications d'analyse de grappes dans l'analyse des données génomiques, y compris la classification, l'expression des gènes, la visualisation, les mesures de distance et les algorithmes de regroupement.