Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la fraude scientifique, l'intégrité, les cas d'inconduite, les lignes directrices et les cadres institutionnels pour l'intégrité de la recherche.
Explore les techniques de résolution d'entités, la déduplication des données, les métriques de similitude, le coût de calcul, les techniques de blocage et l'échelle des jointures de similarité.
Explore Apache Hive pour l'entreposage de données, les formats de données et la partition, avec des exercices pratiques dans la requête et la connexion à Hive.
Plonge dans les défis de la publication de données sur les humanités numériques et l'importance des principes de données FAIR pour la gestion des données scientifiques.
Discute de la représentation des données au moyen de modèles et de systèmes, couvrant les modèles mathématiques, les structures de données, les niveaux de modélisation et la gestion des données.
Explore les techniques de résolution d'entités pour identifier et agréger différents profils d'entités à travers des ensembles de données, couvrant les défis et les solutions.
Examine la façon dont l'IA/ML façonne le futur lieu de travail, en mettant l'accent sur les systèmes et les processus d'entreprise, et discute de l'état actuel de l'adoption de l'IA/ML dans les entreprises.
Couvre la mise en œuvre d'un système d'information pour la gestion des trajectoires de taxi, y compris le filtrage des données, la création de modèles de trajectoire et la comparaison des performances.
Explore la précision des données par l'évaluation de la fidélité, la détection des erreurs, la manipulation aberrante, les corrélations, les dépendances fonctionnelles, la détection des violations, les contraintes de déni et les techniques de réparation des données.