In mathematics, the complex Witt algebra, named after Ernst Witt, is the Lie algebra of meromorphic vector fields defined on the Riemann sphere that are holomorphic except at two fixed points. It is also the complexification of the Lie algebra of polynomial vector fields on a circle, and the Lie algebra of derivations of the ring C[z,z−1].
There are some related Lie algebras defined over finite fields, that are also called Witt algebras.
The complex Witt algebra was first defined by Élie Cartan (1909), and its analogues over finite fields were studied by Witt in the 1930s.
A basis for the Witt algebra is given by the vector fields , for n in .
The Lie bracket of two basis vector fields is given by
This algebra has a central extension called the Virasoro algebra that is important in two-dimensional conformal field theory and string theory.
Note that by restricting n to 1,0,-1, one gets a subalgebra. Taken over the field of complex numbers, this is just the Lie algebra of the Lorentz group . Over the reals, it is the algebra sl(2,R) = su(1,1).
Conversely, su(1,1) suffices to reconstruct the original algebra in a presentation.
Over a field k of characteristic p>0, the Witt algebra is defined to be the Lie algebra of derivations of the ring
k[z]/zp
The Witt algebra is spanned by Lm for −1≤ m ≤ p−2.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
L′algèbre de Virasoro est une algèbre de Lie complexe de dimension infinie qui joue un rôle essentiel dans certaines théories physiques, notamment en théorie des cordes, et d'une manière générale dans les théories conformes des champs, ainsi qu'en mathématiques dans l'étude du groupe Monstre (au travers du module moonshine) et des algèbres vertex. Elle tient son nom du physicien argentin qui les a introduit en théorie des cordes en 1970.
Une théorie conforme des champs ou théorie conforme (en anglais, conformal field theory ou CFT) est une variété particulière de théorie quantique des champs admettant le comme groupe de symétrie. Ce type de théorie est particulièrement étudié lorsque l'espace-temps y est bi-dimensionnel car en ce cas le groupe conforme est de dimension infinie et bien souvent la théorie est alors exactement soluble.
Explore les vecteurs conformaux, l'algèbre Virasoro et l'algèbre Heisenberg vertex dans la théorie des algèbres opérateurs de vertex.
,
Let k be a field of characteristic ≠2, A be a central simple algebra with involution σ over k and W(A,σ) be the associated Witt group of hermitian forms. We prove that for all purely inseparable extensions L of k, the canonical map rL/k:W(A,σ)⟶W(AL,σL) is ...
Most two-dimensional massless field theories carry represe ntations of the Virasoro algebra as consequences of their conformal symmetry. Recently, conformal symmetry has been rigorously established for scaling limit s of lattice models by means of discrete ...
The subject of this thesis lies in the intersection of differential geometry and functional analysis, a domain usually called global analysis. A central object in this work is the group Ds(M) of all orientation preserving diffeomorphisms of a compact manif ...