Flip (mathematics)In algebraic geometry, flips and flops are codimension-2 surgery operations arising in the minimal model program, given by blowing up along a relative canonical ring. In dimension 3 flips are used to construct minimal models, and any two birationally equivalent minimal models are connected by a sequence of flops. It is conjectured that the same is true in higher dimensions. Minimal model program The minimal model program can be summarised very briefly as follows: given a variety , we construct a sequence of contractions , each of which contracts some curves on which the canonical divisor is negative.
Cone of curvesIn mathematics, the cone of curves (sometimes the Kleiman-Mori cone) of an algebraic variety is a combinatorial invariant of importance to the birational geometry of . Let be a proper variety. By definition, a (real) 1-cycle on is a formal linear combination of irreducible, reduced and proper curves , with coefficients . Numerical equivalence of 1-cycles is defined by intersections: two 1-cycles and are numerically equivalent if for every Cartier divisor on . Denote the real vector space of 1-cycles modulo numerical equivalence by .
Canonical ringIn mathematics, the pluricanonical ring of an algebraic variety V (which is nonsingular), or of a complex manifold, is the graded ring of sections of powers of the canonical bundle K. Its nth graded component (for ) is: that is, the space of sections of the n-th tensor product Kn of the canonical bundle K. The 0th graded component is sections of the trivial bundle, and is one-dimensional as V is projective. The projective variety defined by this graded ring is called the canonical model of V, and the dimension of the canonical model is called the Kodaira dimension of V.
Fano varietyIn algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties.
Nef line bundleIn algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of a nef divisor. More generally, a line bundle L on a proper scheme X over a field k is said to be nef if it has nonnegative degree on every (closed irreducible) curve in X.
Contraction morphismIn algebraic geometry, a contraction morphism is a surjective projective morphism between normal projective varieties (or projective schemes) such that or, equivalently, the geometric fibers are all connected (Zariski's connectedness theorem). It is also commonly called an algebraic fiber space, as it is an analog of a fiber space in algebraic topology. By the Stein factorization, any surjective projective morphism is a contraction morphism followed by a finite morphism. Examples include ruled surfaces and Mori fiber spaces.
Kodaira dimensionIn algebraic geometry, the Kodaira dimension κ(X) measures the size of the canonical model of a projective variety X. Igor Shafarevich in a seminar introduced an important numerical invariant of surfaces with the notation κ. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The canonical bundle of a smooth algebraic variety X of dimension n over a field is the line bundle of n-forms, which is the nth exterior power of the cotangent bundle of X.
Morphism of algebraic varietiesIn algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties.
Géométrie birationnellethumb|right|Le cercle est birationnellement équivalent à la droite. Un exemple d'application birationnelle est la projection stéréographique, représentée ici ; avec les notations du texte, P a pour abscisse 1/t. En mathématiques, la géométrie birationnelle est un domaine de la géométrie algébrique dont l'objectif est de déterminer si deux variétés algébriques sont isomorphes, à un ensemble négligeable près. Cela revient à étudier des applications définies par des fonctions rationnelles plutôt que par des polynômes, ces applications n'étant pas définies aux pôles des fonctions.
Ample line bundleIn mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space.