Résumé
thumb|right|Le cercle est birationnellement équivalent à la droite. Un exemple d'application birationnelle est la projection stéréographique, représentée ici ; avec les notations du texte, P a pour abscisse 1/t. En mathématiques, la géométrie birationnelle est un domaine de la géométrie algébrique dont l'objectif est de déterminer si deux variétés algébriques sont isomorphes, à un ensemble négligeable près. Cela revient à étudier des applications définies par des fonctions rationnelles plutôt que par des polynômes, ces applications n'étant pas définies aux pôles des fonctions. Une d'une variété (supposée irréductible) X vers une autre variété Y, notée X ⇢ Y, est définie comme un morphisme d'un ouvert non vide U de X vers Y. U est ouvert au sens de la topologie de Zariski, et donc a pour complémentaire un sous-ensemble de X de plus petite dimension. Concrètement, une application rationnelle peut être définie à partir de fonctions rationnelles des coordonnées. Une application birationnelle de X vers Y est une application rationnelle f: X ⇢ Y telle qu'il existe une application rationnelle Y ⇢ X inverse de f. Une application birationnelle induit un isomorphisme d'un ouvert non vide de X vers un ouvert non vide de Y. On dit alors que X et Y sont birationnellement équivalents (ou parfois simplement birationnels). En termes algébriques, deux variétés sur un corps k sont birationnelles si et seulement si leurs sont isomorphes en tant qu'extensions de k. Un cas particulier est celui de morphisme birationnel f: X → Y, c'est-à-dire que f est partout définie, mais pas nécessairement son inverse. Cela a typiquement lieu lorsque f envoie certaines sous-variétés de X vers des points de Y. Une variété X est dite rationnelle si elle est birationnellement équivalente à un espace affine (ou projectif), autrement dit si (à un sous-ensemble de plus petite dimension près) elle s'identifie à un espace affine (à un sous-espace de dimension plus petite près).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.