Concept

Jet (mathématiques)

Résumé
En mathématiques, un jet est une opération qui, en chaque point de son domaine, associe à une fonction différentiable f un polynôme : la série de Taylor de f tronquée. Bien que ceci soit la définition d'un jet, la théorie des jets considère ces polynômes comme des polynômes formels plutôt que des fonctions polynomiales. Cet article explore d'abord la notion de jet d'une fonction d'une variable réelle à valeur réelle, suivie d'une discussion de la généralisation à plusieurs variables. Ensuite, il donne une construction rigoureuse des jets et des espaces de jets entre espaces euclidiens. Il conclut par une description des jets entre variétés, et d'une construction intrinsèque de ces jets. Dans ce cadre plus général, il donne un résumé de quelques-unes des applications des jets à la géométrie différentielle et à la théorie des équations différentielles. Avant de donner une définition rigoureuse d'un jet, il est utile d'examiner quelques cas particuliers. Soit une fonction à valeur réelle ayant au moins dérivées dans un voisinage du point . Alors, d'après le théorème de Taylor, où Alors le jet d'ordre k ou k-jet de au point est, par définition, le polynôme Les jets sont normalement considérés comme des polynômes formels de la variable et pas comme de véritables fonctions de cette variable. En d'autres termes, est une variable indéterminée qui permet d'accomplir différentes opérations algébriques sur les jets. En fait, c’est le point de base qui donne à un jet sa dépendance fonctionnelle. Ainsi, en variant le point de base, un jet donne un polynôme d’ordre au plus en chaque point. Ceci est une différence conceptuelle importante entre les jets et les séries de Taylor tronquées : habituellement une série de Taylor est considérée comme ayant une dépendance fonctionnelle par rapport à sa variable plutôt que par rapport à son point de base. Au contraire, les jets séparent les propriétés algébriques des séries de Taylor de leurs propriétés fonctionnelles. Nous verrons les raisons et les applications de cette séparation plus loin dans l’article.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.