Résumé
La photoélasticimétrie est une méthode expérimentale permettant de visualiser les contraintes existant à l'intérieur d'un solide grâce à sa photoélasticité. C'est une méthode principalement optique se basant sur la biréfringence acquise par les matériaux soumis à des contraintes. On l'utilise souvent dans les cas où les méthodes mathématiques et informatiques deviennent trop lourdes à mettre en œuvre. La photoélasticimétrie fut développée au début du par Ernest George Coker et de l'université de Londres. Leur livre Treatise on Photoelasticity (Traité de photoélasticité), publié en 1930, devint un standard sur le sujet. En parallèle, un travail expérimental important était réalisé avec des améliorations et des simplifications de la technique et l'équipement. Cette méthode devint rapidement très utilisée et de nombreux laboratoires spécialisés furent créés. L'étude en continu des structures fut ensuite créée, ce qui permit le développement de la photoélasticimétrie dynamique, très utile pour l'étude des phénomènes de fracture des matériaux. Cette méthode est basée sur la biréfringence des matériaux acquise sous l'effet des contraintes. Cette biréfringence peut être étudiée en analysant la façon dont la polarisation de la lumière est transformée après le passage à travers le matériau. Par exemple, une onde lumineuse polarisée rectilignement pourra ressortir polarisée elliptiquement. Cela s'explique par le fait que les deux composantes de l'onde subissent un retard l'une par rapport à l'autre. Ce retard est directement relié aux contraintes présentes dans le matériau. On peut donc mesurer les contraintes grâce à cette modification de la polarisation. Le retard entre les deux composantes de l'onde correspond à un déphasage qui dépend de la longueur d'onde, c'est-à-dire de la couleur. C'est pourquoi les images obtenues avec de la lumière blanche présentent des irisations colorées. Expérimentalement, on peut simplement utiliser la méthode suivante : une lumière monochromatique est polarisée à l'aide d'un polariseur, envoyée sur l'échantillon à analyser, puis passe à travers un second polariseur.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.