PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
MATH-451: Numerical approximation of PDEsThe course is about the derivation, theoretical analysis and implementation of the finite element method for the numerical approximation of partial differential equations in one and two space dimens
MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
MGT-502: Data science and machine learningHands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
ME-390: Foundations of artificial intelligenceThis course provides the students with 1) a set of theoretical concepts to understand the machine learning approach; and 2) a subset of the tools to use this approach for problems arising in mechanica