Concept

Cylinder stress

Résumé
In mechanics, a cylinder stress is a stress distribution with rotational symmetry; that is, which remains unchanged if the stressed object is rotated about some fixed axis. Cylinder stress patterns include: circumferential stress, or hoop stress, a normal stress in the tangential (azimuth) direction. axial stress, a normal stress parallel to the axis of cylindrical symmetry. radial stress, a normal stress in directions coplanar with but perpendicular to the symmetry axis. These three principal stresses- hoop, longitudinal, and radial can be calculated analytically using a mutually perpendicular tri-axial stress system. The classical example (and namesake) of hoop stress is the tension applied to the iron bands, or hoops, of a wooden barrel. In a straight, closed pipe, any force applied to the cylindrical pipe wall by a pressure differential will ultimately give rise to hoop stresses. Similarly, if this pipe has flat end caps, any force applied to them by static pressure will induce a perpendicular axial stress on the same pipe wall. Thin sections often have negligibly small radial stress, but accurate models of thicker-walled cylindrical shells require such stresses to be considered. In thick-walled pressure vessels, construction techniques allowing for favorable initial stress patterns can be utilized. These compressive stresses at the inner surface reduce the overall hoop stress in pressurized cylinders. Cylindrical vessels of this nature are generally constructed from concentric cylinders shrunk over (or expanded into) one another, i.e., built-up shrink-fit cylinders, but can also be performed to singular cylinders though autofrettage of thick cylinders. The hoop stress is the force over area exerted circumferentially (perpendicular to the axis and the radius of the object) in both directions on every particle in the cylinder wall. It can be described as: where: F is the force exerted circumferentially on an area of the cylinder wall that has the following two lengths as sides: t is the radial thickness of the cylinder l is the axial length of the cylinder.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.