Résumé
L'implantation ionique est un procédé d'ingénierie des matériaux. Comme son nom l'indique, il est utilisé pour implanter les ions d'un matériau dans un autre solide, changeant de ce fait les propriétés physiques de ce solide. L'implantation ionique est utilisée dans la fabrication des dispositifs à semi-conducteurs, pour le traitement de surface des métaux, ainsi que pour la recherche en science des matériaux. Les ions permettent à la fois de changer les propriétés chimiques de la cible, mais également les propriétés structurelles car la structure cristalline de la cible peut être abîmée ou même détruite. Un équipement d'implantation ionique se compose en règle générale d'une source de production d'ions, d'un accélérateur de particules et d'une chambre pour la cible. L'accélérateur utilise les propriétés électrostatiques de l'ion pour augmenter son énergie. La quantité de matériaux implantée, appelée la dose, est l'intégrale sur le temps du courant ionique. Les courants électriques en jeu dans les implanteurs sont de l'ordre du microampère au milliampère. Ils ne permettent donc d'implanter qu'une faible quantité d'ions. C'est la raison principale pour laquelle cette technique n'est utilisée que dans les domaines où la modification qui est recherchée est faible. L'accélération des ions atteint typiquement des énergies allant de 10 à 500 keV. Toutefois, il est possible de se limiter à des énergies inférieures à , mais dans ce cas la pénétration ne dépasse jamais les quelques nanomètres. On trouve également des accélérateurs qui sont capables d'accélérer des ions jusqu'à , mais cela provoque des dégâts structurels importants à la cible. Par ailleurs, étant donné que la distribution de la profondeur de pénétration est large, le changement de composition en un point donné est relativement faible. L'introduction de dopants dans un semi-conducteur est l'application la plus commune de l'implantation ionique. Les ions utilisés pour le dopage, tels que le bore, le phosphore ou l'arsenic, sont généralement produits à partir d'une source gazeuse, ce qui garantit une grande pureté de la source.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
EE-532: Integrated circuits technology
This course will give an overview of some of the most relevant aspects of CMOS technology used to design and fabricate integrated circuits. Current research and challenges brought about by shrinking F