La pyroélectricité (du grec πῦρ, pyr, feu) est la propriété d'un matériau dans lequel un changement de température entraine une variation de polarisation électrique. Cette variation de polarisation crée une différence de potentiel temporaire, celle-ci disparaissant après le temps de relaxation diélectrique. Cette variation peut générer un courant électrique, ce qui rend ces matériaux utiles pour la détection de radiations ou la production d'électricité. Ils sont tout particulièrement utilisés dans certains détecteurs infrarouge. L'effet pyroélectrique ne doit pas être confondu avec l'effet thermoélectrique, où un gradient de température fixé donne naissance à une tension permanente.
Les cristaux pyroélectriques forment un sous ensemble des cristaux piézoélectriques : 10 des cristallines piézoélectriques sont aussi pyroélectriques.
La pyroélectricité peut être visualisée comme le côté d'un triangle, dont les sommets représentent l'énergie d'un cristal : cinétique, électrique et thermique. Le côté entre les sommets électrique et thermique représente l'effet pyroélectrique et ne produit pas d'énergie cinétique. Le côté entre les sommets cinétique et électrique représente l'effet piezoélectrique et ne produit pas de chaleur.
Bien que des matériaux pyroélectriques artificiels ont été conçus, l'effet a été tout d'abord découvert sur des matériaux naturels tels que la tourmaline. L'effet pyroélectrique est également présent dans les os et les tendons.
La charge pyroélectrique dans les minéraux apparait sur les faces opposées d'un cristal asymétrique. La direction de propagation de la charge est généralement constante à travers un matériau pyroélectrique, néanmoins dans certains matériaux cette direction peut varier en fonction d'un champ électrique « proche ». Ces matériaux ont des qualités ferroélectriques. Tous les matériaux pyroélectriques ont des propriétés piezoélectriques, car les deux propriétés sont étroitement liées. Cependant, certains matériaux piézoélectriques, du fait de leur structure cristalline symétrique, n'ont pas de propriétés pyroélectriques.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Students analyse the fundamental characteristics of optical detectors. Thermal and photoemissive devices as well as photodiodes and infrared sensors are studied. CCD and CMOS cameras are analysed in d
Comprendre les principes physiques utilisés dans les capteurs. Vue générale des différents principes de transduction et de l'électronique associée. Montrer des exemples d'application.
Explore les composants de stress, la polarisation et les coefficients piézoélectriques dans les capteurs piézoélectriques.
Explore la multiferroïsme à spin, le contrôle magnétique de la polarisation ferroélectrique et la ferroélectricité à collinéarité-magnétisme.
Explore les propriétés électriques et magnétiques des matériaux, y compris la conductivité, la résistivité, les isolants et les dipôles dans les champs électriques.
La polarisation (ou plus précisément le vecteur polarisation) est une grandeur physique macroscopique vectorielle utilisée dans l'étude des propriétés des matériaux diélectriques. Elle désigne la densité volumique de moment dipolaire électrostatique. Son unité dans le Système international est le C/m. Ce concept a été introduit par Faraday alors qu'il étudiait le comportement des isolants électriques dans des champs électrostatiques. Dans un diélectrique parfait, il n'existe pas de charges électriques libres.
Le cobalt est l'élément chimique de numéro atomique 27, de symbole Co. Le cobalt de structure électronique [Ar] 4s2 3d7 est le second élément du huitième groupe secondaire, ce métal de transition fait partie du groupe du fer. Le corps simple cobalt a des propriétés physiques assez voisines de celles du fer et du nickel. D'un point de vue chimique, il est moins réactif que le fer. Le cobalt est aussi un élément du groupe 9, dont les trois premiers Co, Rh et Ir constituent le groupe du cobalt.
La piézoélectricité (du grec πιέζειν, piézein, presser, appuyer) est la propriété que possèdent certains matériaux de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Les deux effets sont indissociables. Le premier est appelé effet piézoélectrique direct ; le second effet piézoélectrique inverse. Cette propriété trouve un très grand nombre d’applications dans l’industrie et la vie quotidienne.
Pyroelectricity in a recently developed all-organic composite electret with a polar polynorbornene-based filler and polydimethylsiloxane (PDMS) matrix has been studied with the help of thermal and dielectric techniques. Measurement of the pyroelectric p co ...
The method of generating x-rays using the pyroelectric effect has garnered interest for applications that desire portability and low power consumption, particularly for real-time in-field and on-line analyses. However, the x-ray intensity produced by this ...
2022
, ,
The present invention concerns a method for producing at least one ferroelectric device or structure comprising the steps of providing at least one ferroelectric material or layer, or providing at least one ferroelectric material or layer to be patterned o ...