Résumé
In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run. A decision problem is a question which, for every input in some infinite set of inputs, answers "yes" or "no".. Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or other values of some other kind, such as strings of a formal language. The formal representation of a decision problem is a subset of the natural numbers. For decision problems on natural numbers, the set consists of those numbers that the decision problem answers "yes" to. For example, the decision problem "is the input even?" is formalized as the set of even numbers. A decision problem whose input consists of strings or more complex values is formalized as the set of numbers that, via a specific Gödel numbering, correspond to inputs that satisfy the decision problem's criteria. A decision problem A is called decidable or effectively solvable if the formalized set of A is a recursive set. Otherwise, A is called undecidable. A problem is called partially decidable, semi-decidable, solvable, or provable if A is a recursively enumerable set. In computability theory, the halting problem is a decision problem which can be stated as follows: Given the description of an arbitrary program and a finite input, decide whether the program finishes running or will run forever. Alan Turing proved in 1936 that a general algorithm running on a Turing machine that solves the halting problem for all possible program-input pairs necessarily cannot exist. Hence, the halting problem is undecidable for Turing machines. The concepts raised by Gödel's incompleteness theorems are very similar to those raised by the halting problem, and the proofs are quite similar.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
MATH-483: Gödel and recursivity
Gödel incompleteness theorems and mathematical foundations of computer science
CS-251: Theory of computation
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Afficher plus
Séances de cours associées (37)
Algorithmes: Halting Problem Quiz
Explore le problème d'arrêt, le positionnement efficace des éléments de liste et l'algorithme du caissier.
Théorie de la calculabilité et problème d'arrêtMOOC: Information, Calcul, Communication: Introduction à la pensée informatique
Couvre la théorie de la calculabilité et le problème de l'arrêt dans les algorithmes.
Contrats intelligents : Bitcoin et UTXO
Explore les contrats intelligents dans Bitcoin, le modèle UTXO, l'autorisation, les contrôles de validité, les défis, les applications et les tendances émergentes.
Afficher plus
Publications associées (43)
Personnes associées (2)
Concepts associés (18)
Problème de l'arrêt
vignette|L'animation illustre une machine impossible : il n'y a pas de machine qui lit n'importe quel code source d'un programme et dit si son exécution termine ou non. En théorie de la calculabilité, le problème de l'arrêt est le problème de décision qui détermine, à partir d'une description d'un programme informatique, et d'une entrée, si le programme s'arrête avec cette entrée ou non.
Proof of impossibility
In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative proof, proof of an impossibility theorem, or negative result. Proofs of impossibility often are the resolutions to decades or centuries of work attempting to find a solution, eventually proving that there is no solution.
Problème algorithmique
Un problème algorithmique est, en informatique théorique, un objet mathématique qui représente une question ou un ensemble de questions auxquelles un ordinateur devrait être en mesure de répondre. Le plus souvent, ces problèmes sont de la forme : étant donné un objet (l'instance), effectuer une certaine action ou répondre à telle question. Par exemple, le problème de la factorisation est le problème suivant : étant donné un nombre entier, trouver un facteur premier de cet entier.
Afficher plus