Résumé
L'attracteur de Rössler est l'attracteur produit par un système dynamique constitué de trois équations différentielles ordinaires contenant un terme non linéaire introduit en 1976 par Otto E. Rössler. Pour certaines valeurs des paramètres, ces équations différentielles produisent un attracteur chaotique. C'est un exemple d'attracteur étrange (selon l'appellation de David Ruelle ) et qui présente des propriétés fractales. Otto Rössler a initialement obtenu un système dynamique produisant un attracteur chaotique à partir d'une réaction chimique théorique. En cherchant à simplifier le système initial sur son ordinateur analogique, il a fini par obtenir un système mathématiquement plus simple, n'ayant plus aucun lien avec une possible réaction chimique, mais produisant un attracteur ayant la même topologie. À l'invitation d'Art Winfree, Rössler cherchait un équivalent chimique du système de Lorenz. L'historique de la découverte de cet attracteur a été établi. L'attracteur de Rössler est plus simple à analyser que l'attracteur de Lorenz (doté d'une symétrie de rotation) car il ne présente aucune symétrie. Les équations du système de Rössler sont où , et sont les variables, définissant l'espace des états (ou l'espace des phases) et , et sont les paramètres (maintenus constant lors d'une intégration). Rössler étudia l'attracteur pour a = 0,2, b = 0,2, et c = 5,7. Une étude complète de la nature (topologie) des solutions de ce système a été réalisée pour , et . Lorsque le paramètre est augmenté, la solution du système devient chaotique après une cascade de doublements de période, c'est-à-dire une succession d'orbites périodiques dont les périodes sont , , , , ..., . Une fois la période infinie atteinte (), l'attracteur devient chaotique. Si la valeur de est encore augmentée, l'attracteur chaotique se développe ; toutefois, pour certaines plages des valeurs de , l'attracteur peut redevenir périodique : c'est une fenêtre périodique. vignette|Diagramme de bifurcation du système de Rössler calculé pour et .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Personnes associées (2)
Concepts associés (6)
Attracteur de Rössler
L'attracteur de Rössler est l'attracteur produit par un système dynamique constitué de trois équations différentielles ordinaires contenant un terme non linéaire introduit en 1976 par Otto E. Rössler. Pour certaines valeurs des paramètres, ces équations différentielles produisent un attracteur chaotique. C'est un exemple d'attracteur étrange (selon l'appellation de David Ruelle ) et qui présente des propriétés fractales. Otto Rössler a initialement obtenu un système dynamique produisant un attracteur chaotique à partir d'une réaction chimique théorique.
Attracteur de Hénon
L'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Attracteur de Lorenz
L’attracteur de Lorenz est une structure fractale correspondant au comportement à long terme de l'oscillateur de Lorenz. L'attracteur montre comment les différentes variables du système dynamique évoluent dans le temps en une trajectoire non périodique. En 1963, le météorologue Edward Lorenz est le premier à mettre en évidence le caractère vraisemblablement chaotique de la météorologie. Le modèle de Lorenz, appelé aussi système dynamique de Lorenz ou oscillateur de Lorenz, est une modélisation simplifiée de phénomènes météorologiques basée sur la mécanique des fluides.
Afficher plus
Cours associés (6)
COM-502: Dynamical system theory for engineers
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
NX-465: Computational neurosciences: neuronal dynamics
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
PHYS-460: Nonlinear dynamics, chaos and complex systems
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
Afficher plus