Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
One approach to understand the chaotic dynamics of nonlinear dissipative systems is the study of non-chaotic yet dynamically unstable invariant solutions embedded in the system's chaotic attractor. The significance of zero-dimensional unstable fixed points and one-dimensional unstable periodic orbits capturing time-periodic dynamics is widely accepted for high-dimensional chaotic systems, including fluid turbulence, while higher-dimensional invariant tori representing quasiperiodic dynamics have rarely been considered. We demonstrate that unstable 2-tori are generically embedded in the hyperchaotic attractor of a dissipative system of ordinary differential equations; tori can be numerically identified via bifurcations of unstable periodic orbits and their parameteric continuation and characterization of stability properties are feasible. As higher-dimensional tori are expected to be structurally unstable, 2-tori together with periodic orbits and equilibria form a complete set of relevant invariant solutions on which to base a dynamical description of chaos.
Thibault Didier Roch, Fabian Barras