Résumé
La commutation-Q (Q-switching en anglais), également appelée formation de grandes pulsations, est une technique permettant à un laser de produire un rayon sortant pulsant. Elle autorise la création de pulsations de lumière de haute puissance (de l’ordre du gigawatt), beaucoup plus que si le laser produisait une onde de sortie continue (mode constant). Comparée au blocage de mode, qui est une autre technique pour produire des pulsations avec un laser, la commutation-Q permet de plus faibles fréquences de répétition, de plus grandes énergies, ainsi que de plus longs temps de pulsations. Les deux techniques sont parfois utilisées conjointement. La commutation-Q fut pour la première fois proposée en 1958 par Gordon Gould, et découverte et démontrée indépendamment en 1961 ou 1962 par R.W. Hellwarth et F.J. McClung, en utilisant des cellules de Kerr à commutation électrique comme volets sur un laser à rubis. La commutation-Q est réalisée en intégrant des atténuateurs variables dans le résonateur optique du laser. Quand l’atténuateur fonctionne, la lumière qui quitte le milieu d’amplification ne peut pas revenir, et le processus de laser ne peut démarrer pour cette lumière. Cette atténuation à l’intérieur de la cavité correspond à une baisse du facteur Q, ou facteur qualité du résonateur optique. Un facteur Q élevé correspond à de faibles pertes dans le résonateur par aller-retour, et vice versa. L’atténuateur variable est plus communément appelé un « commutateur-Q », quand il est utilisé dans cette application. Initialement, le milieu laser est « pompé » dans un état excité grâce à une source d’énergie extérieure pendant que le commutateur-Q est réglé pour empêcher un retour de lumière dans le milieu d’amplification (ce qui produit un résonateur à faible facteur Q). Ceci provoque une inversion de population, mais le processus de laser ne peut pas encore démarrer puisqu’il n’y a aucun retour du résonateur. Sachant que le taux d’émission stimulée dépend de la quantité de lumière entrant dans le milieu, la quantité d’énergie stockée dans le milieu d’amplification augmente au fur et à mesure que le milieu est « pompé ».
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.