Concept

Inversion de population

In physics, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy states. It is called an "inversion" because in many familiar and commonly encountered physical systems, this is not possible. This concept is of fundamental importance in laser science because the production of a population inversion is a necessary step in the workings of a standard laser. To understand the concept of a population inversion, it is necessary to understand some thermodynamics and the way that light interacts with matter. To do so, it is useful to consider a very simple assembly of atoms forming a laser medium. Assume there is a group of N atoms, each of which is capable of being in one of two energy states: either The ground state, with energy E1; or The excited state, with energy E2, with E2 > E1. The number of these atoms which are in the ground state is given by N1, and the number in the excited state N2. Since there are N atoms in total, The energy difference between the two states, given by determines the characteristic frequency of light which will interact with the atoms; This is given by the relation h being Planck's constant. If the group of atoms is in thermal equilibrium, it can be shown from Maxwell–Boltzmann statistics that the ratio of the number of atoms in each state is given by the ratio of two Boltzmann distributions, the Boltzmann factor: where T is the thermodynamic temperature of the group of atoms, and k is Boltzmann's constant. We may calculate the ratio of the populations of the two states at room temperature (T ≈ 300 K) for an energy difference ΔE that corresponds to light of a frequency corresponding to visible light (ν ≈ 5×1014 Hz). In this case ΔE = E2 - E1 ≈ 2.07 eV, and kT ≈ 0.026 eV. Since E2 - E1 ≫ kT, it follows that the argument of the exponential in the equation above is a large negative number, and as such N2/N1 is vanishingly small; i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (12)
MICRO-426: Laser fundamentals and applications for engineers
The course will cover the fundamentals of lasers and focus on selected practical applications using lasers in engineering. The course is divided approximately as 1/3 theory and 2/3 covering selected
PHYS-761: Attosecond radiation sources
This course describes the principles of attosecond photons and electron pulses generation
MICRO-422: Lasers: theory and modern applications
This course gives an introduction to Lasers by both considering fundamental principles and applications. Topics that are covered include the theory of lasers, laser resonators and laser dynamics. In
Afficher plus
Séances de cours associées (45)
Coefficients d'Einstein et amplification
Explore les coefficients d'Einstein, l'inversion de population et l'amplification de la lumière dans la technologie laser.
Lasers à semi-conducteurs: fonctionnement et caractéristiques
Explique le fonctionnement du laser à semi-conducteur, la formation de jonction pn et l'efficacité laser.
Architecture Laser : Dynamique Quantique et Stabilisation
Explore la technologie laser, la dynamique quantique, l'émission stimulée et la stabilisation des photons dans les résonateurs laser.
Afficher plus
Publications associées (56)

Terahertz emission from diamond nitrogen-vacancy centers

László Forró, Ferenc Simon, Bence Gábor Márkus, Sándor Kollarics

Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy c ...
Amer Assoc Advancement Science2024

Fast in vivo assay of creatine kinase activity in the human brain by P-31 magnetic resonance fingerprinting

Lijing Xin, Daniel Wenz, Mark Stephan Widmaier, Songi Lim

A new and efficient magnetisation transfer P-31 magnetic resonance fingerprinting (MT-P-31-MRF) approach is introduced to measure the creatine kinase metabolic rate kCKkCK{k}_{\mathrm{CK}} between phosphocreatine (PCr) and adenosine triphosphate (ATP) i ...
WILEY2023

Search for long-lasting electronic coherence using on-the-fly ab initio semiclassical dynamics

Jiri Vanicek, Alan Scheidegger, Nikolay Golubev

Using a combination of high-level ab initio electronic structure methods with efficient on-the-fly semiclassical evaluation of nuclear dynamics, we performed a massive scan of small polyatomic molecules searching for a long-lasting oscillatory dynamics of ...
AIP Publishing2022
Afficher plus
Unités associées (1)
Concepts associés (14)
Science du laser
lien=//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Military_laser_experiment.jpg/250px-Military_laser_experiment.jpg|vignette|250x250px| Une expérience laser sur une table optique lien=//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Light_Amplification_by_Stimulated_Emission_of_Radiation.jpg/250px-Light_Amplification_by_Stimulated_Emission_of_Radiation.jpg|vignette|250x250px| Modules laser (fréquences de bas en haut : 405, 445, 520, 532, 635 et 660 nm) La science du laser ou physique du laser est une branche de l'optique qui décrit la théorie et la pratique des lasers.
Laser pumping
Laser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
Laser à colorant
vignette|316x316px|Gros plan d'un laser à colorant CW de table à base de rhodamine 6G, émettant à 580 nm (jaune). Le faisceau laser émis est visible sous forme de lignes jaunes pâles entre la fenêtre jaune (au centre) et l'optique jaune (en haut à droite), où il se reflète à travers l'image vers un miroir invisible, et revient dans le jet de colorant depuis le coin inférieur gauche. La solution de colorant orange entre dans le laser par la gauche et sort par la droite, toujours brillante de phosphorescence triplet, et est pompée par un faisceau de 514 nm (bleu-vert) provenant d'un laser à argon.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.