Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size L(t) and a propagation velocity c(p)(t) (t is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent fric ...
Fibre-reinforced polymers (FRP) strengthening can be applied to decrease the seismic vulnerability of existing masonry buildings, both with regard to in-plane and out-of-plane failure mechanisms. Experimentally, the impact of strengthening solutions has be ...
Proceedings of the 2nd Croatian Conference on Earthquake Eng2023
Metal additive manufacturing (AM) offers the possibility to rapidly produce complex geometries that are not achievable with conventional manufacturing methods. The two most common technologies, Laser Powder Bed Fusion (LPBF) and Direct Metal Deposition (DM ...
Additive manufacturing offers the opportunity to produce complex geometries from novel alloys with improved properties. Adapting conventional alloys to the process-specific properties can facilitate rapid implementation of these materials in industrial pra ...
Cu-Be alloys provide excellent electrical and mechanical properties, but present serious health hazards during manufacturing. Among alternative alloys, the Cu-Ti system has the highest yield strength; however, Ti cannot be easily solutionized at concentrat ...
As one of promising candidate materials for fuel claddings and structural components in the Gen-IV fission reactors, FeCrAl(Zr)-ODS ferritic steels were studied to well understand the radiation hardening behavior. Nanoindentation (NI) hardness and plastica ...
High-strength metal alloys achieve their performance via careful control of precipitates and solutes.The nucleation, growth, and kinetics of precipitation, and the resulting mechanical properties, are inherently atomic scale phenomena, particularly during ...
Many metal alloys are strengthened by controlling precipitation to achieve an optimal peak-aged condi-tion where the strength-limiting processes of precipitate shearing and Orowan looping are thought to be comparable. Qualitative models have long captured ...
Most metallurgical properties, e.g., dislocation propagation, precipitate formation, can only be fully understood atomistically but most phenomena and quantities of interest cannot be measured experimentally. Accurate simulation methods are essential but f ...
Body-centered-cubic (BCC) high entropy alloys (HEAs) can show exceptionally high strength up to high temperatures. Mechanistic theories are needed to guide alloy discovery within the immense multicomponent HEA compositional space. Here, two new theories fo ...