Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Algorithme de KarmarkarL’algorithme de Karmarkar est un algorithme introduit par Narendra Karmarkar en 1984 pour résoudre les problèmes d'optimisation linéaire. C'est le premier algorithme réellement efficace qui résout ces problèmes en un temps polynomial. La méthode de l'ellipsoïde fonctionne aussi en temps polynomial mais est inefficace en pratique. En posant le nombre de variables et le nombre de bits d'entrée de l'algorithme, l'algorithme de Karmarkar réalise opérations sur bits à comparer aux opérations pour la méthode des ellipsoïdes.
Affiliated operatorIn mathematics, affiliated operators were introduced by Murray and von Neumann in the theory of von Neumann algebras as a technique for using unbounded operators to study modules generated by a single vector. Later Atiyah and Singer showed that index theorems for elliptic operators on closed manifolds with infinite fundamental group could naturally be phrased in terms of unbounded operators affiliated with the von Neumann algebra of the group.
Wilhelm AckermannWilhelm Ackermann (1896-1962) est un mathématicien allemand, célèbre pour la fonction d'Ackermann (1925) qui est un exemple important de la théorie de la calculabilité. Sa thèse (1924) donne une preuve détaillée de la cohérence de l'. Il fut professeur dans le secondaire, à Burgsteinfurt de 1929 à 1948, puis à Lüdenscheid jusqu'à sa retraite en 1961. Il fut membre correspondant de l'Académie des sciences de Göttingen et professeur honoraire de l'université de Münster.
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.
Invariant measureIn mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.
Axiomes de WightmanLes axiomes de Wightman, proposés par le physicien et mathématicien Arthur Wightman, sont une tentative de formulation mathématique de la théorie quantique des champs. Formulés par Wightman dans les années 1950, ses axiomes ne sont publiés qu'en 1964 après que Rudolf Haag et David Ruelle ont proposé une formulation algébrique de la théorie quantique des champs axiomatique confirmant leur importance.
Cumulative hierarchyIn mathematics, specifically set theory, a cumulative hierarchy is a family of sets indexed by ordinals such that If is a limit ordinal, then Some authors additionally require that or that . The union of the sets of a cumulative hierarchy is often used as a model of set theory. The phrase "the cumulative hierarchy" usually refers to the standard cumulative hierarchy of the von Neumann universe with introduced by . A cumulative hierarchy satisfies a form of the reflection principle: any formula in the language of set theory that holds in the union of the hierarchy also holds in some stages .
Paradoxe de CantorLe paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l'argument a été découvert par Georg Cantor dans les années 1890. On le trouve dans sa lettre adressée à David Hilbert, datée de 1897. Il est appelé ainsi par Bertrand Russell dans ses Principles of Mathematics de 1903. Le paradoxe énonce que l'existence d'un plus grand cardinal conduit à une contradiction.