Concept

Electrochemical reaction mechanism

Résumé
In electrochemistry, an electrochemical reaction mechanism is the step-by-step sequence of elementary steps, involving at least one outer-sphere electron transfer, by which an overall electrochemical reaction occurs. Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes. Electrochemical mechanisms are important to all redox chemistry including corrosion, redox active photochemistry including photosynthesis, other biological systems often involving electron transport chains and other forms of homogeneous and heterogeneous electron transfer. Such reactions are most often studied with standard three electrode techniques such as cyclic voltammetry(CV), chronoamperometry, and bulk electrolysis as well as more complex experiments involving rotating disk electrodes and rotating ring-disk electrodes. In the case of photoinduced electron transfer the use of time-resolved spectroscopy is common. When describing electrochemical reactions an "E" and "C" formalism is often employed. The E represents an electron transfer; sometimes EO and ER are used to represent oxidations and reductions respectively. The C represents a chemical reaction which can be any elementary reaction step and is often called a "following" reaction. In coordination chemistry common C steps which "follow" electron transfer are ligand loss and association. The ligand loss or gain is associated with a geometric change in the complexes coordination sphere. The reaction above would be called an EC reaction. The production of in the reaction above by the "following" chemical reaction produces a species directly at the electrode that could display redox chemistry anywhere in a CV plot or none at all. The change in coordination from to often prevents the observation of "reversible" behavior during electrochemical experiments like cyclic voltammetry. On the forward scan the expected diffusion wave is observed, in example above the reduction of to .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Cours associés (11)
MSE-441: Electrochemistry for materials technology
This course aims at familiarizing the student with state of the art applications of electrochemistry in materials science and technology as well as material requirements for electrochemical engineerin
MSE-311: Corrosion and protection of metals + Laboratory Work
Ce cours d'introduction à la corrosion veut familiariser l'étudiant avec les mécanismes réactionnels de la corrosion, avec les différentes formes de corrosion et avec les principes de la protection co
ME-468: Solar energy conversion
The course will provide fundamentals and technological details of solar energy conversion devices and systems, including 1) solar fuels by photoelectrochemistry, photocatalysis, and solar thermochemis
Afficher plus
Séances de cours associées (29)
Électrodes biomédicales: principes fondamentaux et modélisation de l'impédance
Explore les fondamentaux des bioélectrodes, les défis des électrodes biomédicales, la modélisation d'impédance et le transport de masse par diffusion.
Hot-Fondue: Une révolution gâteuse suisse
Introduit une machine à fondue chaude révolutionnaire pour la cuisine de rue, assurant un fromage fondu parfait à 70 degrés Celsius.
Polarisation des électrodes et dommages aux tissus
Explore la polarisation des électrodes, les causes des lésions tissulaires et les méthodes d'évitement, y compris les impulsions biphasiques et la modélisation d'interface.
Afficher plus
Publications associées (226)