Personnes associées (38)
Henry Markram
Henry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80’s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps. He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band. He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx – an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction. He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the “tabula rasa principle” which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing. In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markram’s lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring. At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the “blue-print” of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBM’s most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10’000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markram’s lab has now set the agenda towards whole brain and molecular modeling. With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the “Intense World Syndrome” proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism. Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Horst Vogel
Horst Vogel est né en 1948 à Würzburg, Allemagne. Après ses études en chimie, il obtient le diplôme de chimie en 1974 de l'Université de Würzburg.Il entreprend ensuite un travail de doctorat au Max-Planck Institut für Biophysikalische Chemie de Göttingen, et obtient en 1978 le grade de docteur ès sciences de l'Université de Göttingen. De 1978 à 1983 il effectue des recherches au Max-Planck Institut für Biologie à Tübingen et en 1984, il rejoint le Biocentre à Bâle où il travaille jusqu'en 1989, effectuant une année au Karolinska Institute à Stockholm. En 1989, Horst Vogel rejoint l'institut de chimie physique de l'EPFL où il dirige un groupe travaillant dans les domaines de la biophysique et de la bioélectronique. Depuis le 1er octobre 1994 il est profeseur en chimie physique des polymères et membranes au Département de chimie de EPFL. Ses intérêts de recherche sont l'étude de la structure et de la dynamique de récepteurs membranaires et l'auto-assemblage des biomolécules aux interfaces pour développer de nouveaux biocapteurs dans le domaine de micro- et nanotechnologie. Il enseigne les sciences du vivant, la biophysique et biochimie, et des chapitres concernant la biotechnologie. Dipl. in Chemistry1974-Univ. Würzburg, DE Ph.D.-1978-MPI für Biophys. Chemie, Göttingen, DE
Jean-Jacques Meister
Citoyen suisse, Jean-Jacques Meister est né en 1950. Il est titulaire d'un diplôme d'ingénieur en électronique et d'un diplôme d'ingénieur physicien, obtenu en 1979 à l'Ecole polytechnique fédérale de Lausanne (EPFL). Il poursuit sa formation à l'Institut des techniques biomédicales de l'Ecole Polytechnique Fédérale de Zurich et obtient son doctorat ès sciences en 1983. De 1984 à 1990, il travaille dans différents domaines de la physique biomédicale. Ses principales réalisations portent sur le développement de méthodes non-invasives utiles à la prévention et au diagnostic des maladies cardio-vasculaires: caractérisation des propriétés biomécaniques des artères, hémodynamique cardio-vasculaire, échographie Doppler ultrasonore. En 1990, il est nommé professeur de physique expérimentale à l'EPFL où il dirige le Laboratoire de génie médical jusqu'en 2001, puis le laboratoire de biophysique cellulaire. Ses activités de recherche concernent principalement la biophysique cellulaire: dynamique du cytosquelette, motilité & adhésion cellulaire et dynamique du calcium dans les muscles lisses. Lors d'un congé sabbatique en 2000, il complète sa formation en biologie moléculaire et cellulaire au célèbre Marine Biological Laboratory de Woods Hole, dans le Massachusetts, USA. Il enseigne la physique générale, la mécanique générale, le génie biomédical et la biophysique aux étudiants de diverses sections de l'EPFL. Il est auteur ou coauteur de plus de 230 publications scientifiques et chapitres de livres et titulaire de 8 brevets internationaux
Mihai Adrian Ionescu
D'origine et de nationalités roumaine et suisse, Mihai-Adrian Ionescu est né en 1965. Après le doctorat en Physique des Composants à Semiconducteurs de l’Institut National Polytechnique de Grenoble, M. Ionescu a travaillé comme chercheur post-doctoral au LETI-CEA Grenoble, sur la caractérisation des diélectriques low-k pour les technologies submicroniques CMOS. Après une courte période au sein du CNRS, comme chargé de recherche 1ere Classe il a effectué un séjour post-doctoral au Center for Integrated Systems, Stanford University, USA. Actuellement il est Professeur Nanoélectronique à l’Ecole Polytechnique Fédérale de Lausanne.
Pierre Magistretti
Pierre J. Magistretti is an internationally-recognized neuroscientist who has made significant contributions in the field of brain energy metabolism. His group has discovered some of the cellular and molecular mechanisms that underlie the coupling between neuronal activity and energy consumption by the brain. This work has considerable ramifications for the understanding of the origin of the signals detected with the current functional brain imaging techniques used in neurological and psychiatric research (see for example Magistretti et al, Science, 283: 496 – 497, 1999). He is the author of over 100 articles published in peer-reviewed journals. He has given over 80 invited lectures at international meetings or at universities in Europe and North America, including the 2000 Talairach Lecture at the “Functional Mapping of the Human Brain Conference”. In November 2000 he has been a “Mc Donnel Visiting Scholar” at Washington University School of Medicine. Pierre J. Magistretti is the President-Elect (2002 – 2004) of the Federation of European Neuroscience Societies (FENS) which has a membership of over 15000 European neuroscientists. He has been first president of the Swiss Society for Neuroscience (1997-1999) and the first Chairman of the Department of Neurosciences of the University of Lausanne (1996 – 1998). Pierre J. Magistretti is Professor of Physiology (since 1988) at the University of Lausanne Medical School. He has been Vice-Dean of the University of Lausanne Medical School from 1996 to 2000. Pierre Magistretti, is Director of the Brain Mind Institute at EPFL and Director of the Center for Psychiatric Neuroscience of the University of Lausanne and CHUV. He is also Director of the NCCR SYNAPSY "the synaptic bases of mental diseases". POSITIONS AND HONORS MAIN POSITION HELD • 1988-2004 Professor of Physiology, University of Lausanne Medical School • 1996-2000 Vice-Dean for Preclinical Departments, University of Lausanne Medical School • 2001-2004 Chairman, Department of Physiology, University of Lausanne Medical School • 2004-present Professor and Director, Center for Psychiatric Neuroscience, Department of Psychiatry, University of Lausanne Medical School and Hospitals (UNIL-CHUV) (Joint appointment with EPFL) • 2005-2008 Professor and Co-Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne (Joint appointment with UNIL-CHUV) • 2007-present Chairman of the Scientific Advisory Board of Centre d’Imagerie Biomédicale (CIBM), an Imaging Consortium of the Universities, University Hospitals of Lausanne and Geneva and of Ecole Polytechnique Fédérale de Lausanne • 2008-present Professor and Director, Brain Mind Institute, Federal Institute of Technology (EPFL), Lausanne Joint appointment with UNIL-CHUV) • 2010-present Director, National Center for Competence in Research (NCCR) “The synaptic bases of mental diseases” of the Swiss National Science Foundation • 2010-present Secretary General, International Brain Research Organization (IBRO) MAIN HONORS AND AWARDS • 1997 Recipient of the Theodore-Ott Prize of the Swiss Academy of Medical Sciences • 2001 Elected Member of Academia Europaea • 2001 Elected Member of the Swiss Academy of Medical Sciences, ad personam • 2002 Recipient of the Emil Kraepelin Guest Professorship, Max Planck Institute für Psychiatry, Münich • 2006 Elected Professor at Collège de France, Paris, International Chair 2007-2008 • 2009 Goethe Award for Psychoanalytic Scholarship, Canadian Psychological Association • 2011 Camillo Golgi Medal Award, Golgi Fondation • 2011 Elected Member of the American College of NeuroPsychopharmacology (ACNP)
Carl Petersen
Carl Petersen studied physics as a bachelor student in Oxford (1989-1992). During his PhD studies under the supervision of Prof. Sir Michael Berridge in Cambridge (1992-1996), he investigated cellular and molecular mechanisms of calcium signalling. In his first postdoctoral period (1996-1998), he joined the laboratory of Prof. Roger Nicoll at the University of California San Francisco (UCSF) to investigate synaptic transmission and plasticity in the hippocampus. During a second postdoctoral period, in the laboratory of Prof. Bert Sakmann at the Max Planck Institute for Medical Research in Heidelberg (1999-2003), he began working on the primary somatosensory barrel cortex, investigating cortical circuits and sensory processing. Carl Petersen joined the Brain Mind Institute of the Faculty of Life Sciences at the Ecole Polytechnique Federale de Lausanne (EPFL) in 2003, setting up the Laboratory of Sensory Processing to investigate the functional operation of neuronal circuits in awake mice during quantified behavior. In 2019, Carl Petersen became the Director of the EPFL Brain Mind Institute, with the goal to promote quantitative multidisciplinary research into neural structure, function, dysfunction, computation and therapy through technological advances.
Wulfram Gerstner
Wulfram Gerstner is Director of the Laboratory of Computational Neuroscience LCN at the EPFL. His research in computational neuroscience concentrates on models of spiking neurons and spike-timing dependent plasticity, on the problem of neuronal coding in single neurons and populations, as well as on the link between biologically plausible learning rules and behavioral manifestations of learning. He teaches courses for Physicists, Computer Scientists, Mathematicians, and Life Scientists at the EPFL.  After studies of Physics in Tübingen and at the Ludwig-Maximilians-University Munich (Master 1989), Wulfram Gerstner spent a year as a visiting researcher in Berkeley. He received his PhD in theoretical physics from the Technical University Munich in 1993 with a thesis on associative memory and dynamics in networks of spiking neurons. After short postdoctoral stays at Brandeis University and the Technical University of Munich, he joined the EPFL in 1996 as assistant professor. Promoted to Associate Professor with tenure in February 2001, he is since August 2006 a full professor with double appointment in the School of Computer and Communication Sciences and the School of Life Sciences. Wulfram Gerstner has been invited speaker at numerous international conferences and workshops. He has served on the editorial board of the Journal of Neuroscience, Network: Computation in Neural Systems', Journal of Computational Neuroscience', and `Science'.
Farzan Jazaeri
Farzan Jazaeri received his M.Sc. degree in 2009 from University of Tehran and his Ph.D. in electronic engineering from EPFL in 2015. He has been serving as Research Scientist at EPFL since 2015 and Senior RD Semiconductor Device Engineer in the Swatch Company since 2019.He is a recipient of the 2018 Electron Devices Society George E. Smith Award, the best talk award from MIXDES 2019 and the best paper awards from ESSDERC2018 and ESSDERC2019, and several other academic awards. He is also awarded an advanced Swiss National Science Foundation grant for two years fellowship in MIT and NASA. His doctoral thesis was recognized to be eligible for the IBM award in 2017. Dr. Jazaeri is currently research scientist and project leader in high level of international scientific collaborative activities at EPFL. His research activities on solid-state physics are focused on creation of the cryogenic temperature infrastructure necessary to operate the qubits for quantum computations(MOSQUITO), radiation-induced damages in advanced devices for the future high energy physics experiments at CERN (GigaRadMOST), Pinned Photodiodes for CIS, and modeling and characterization AlGaN-GaN heterostructure in collaboration with IMEC. Together with Dr. Sallese, he is the lead developer of EPFL HEMT MODEL for GaN HEMTs. He fully developed a new model (EPFL-JL Model) for the so-called nanowire FETs and was invited by Cambridge University Press to write a book on junctionless nanowire FETs, emerging nanoelectronic devices, already published since 2018. He serves as lead editor and reviewer for several scientific journals. He has been an invited keynote speaker at several international conferences and events. He is invited to MIXDES 2019 as a keynote speaker to address quantum bits and quantum computing architecture.From Jun 2009 to February 2010, he worked on designing and implementing SD/HD broadcast systems with SAMIM-RAYANEH Co., Tehran, Iran. Between March 2010 and November 2011 he worked as a SCADA expert in Tehran Regional Electric Co. (TREC), Tehran, Iran. From September 2010 to December 2011, he continued his research activities in nano-electronics in Tehran, Iran. In December 2011, he joined to Electron Device Modelling and Technology Lab (EDLab) and pursued his Ph.D. degree at EPFL. In 2015, he received his Ph.D. from Microsystems and Microelectronics department, Integrated Systems Laboratory (STI/IC) at EPFL, Lausanne, Switzerland.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.