Une ozonolyse est la réaction d'un alcène avec une molécule d'ozone. La réaction d'ozonolyse a été découverte par Harries en 1903. Elle a été largement utilisée pour localiser la position des doubles liaisons des composés éthyléniques dans les molécules organiques. Maintenant des techniques spectroscopiques permettent des analyses plus poussées avec des quantités de produit plus faibles, et sans dégradation. Cette réaction sert en synthèse organique, pour transformer des alcènes en cétone/aldéhyde/acide carboxylique/alcool. Le mécanisme réactionnel admis a été proposé par Rudolf Criegee en 1953. Il est le suivant : La molécule d'ozone réagit sur une double liaison carbone-carbone pour donner un molozonure, ou ozonure primaire. Cette réaction est une cycloaddition [3+2]. Ce molozonure, très instable, se réarrange en deux molécules qui réagissent l'une sur l'autre pour donner un ozonure secondaire. L'ozonure, explosif, est en général traité aux environs de (193 K), et se sépare en deux cétones ou aldéhydes, en fonction des substituants initiaux de l'oléfine, ainsi qu'un atome d'oxygène (qui pourra réagir avec les autres produits de réaction s'il n'est pas capté par un réducteur, souvent du diméthylsulfure qui sera oxydé en diméthylsulfoxyde (DMSO)). L'ozone est un composé assez dangereux. D'une part il est toxique, et d'autre part explosif. Il faut donc veiller à l'utilisation d'une sorbonne bien ventilée, et capter les effluents à la source pour destruction. D'autre part, concernant le caractère explosif, il ne faut pas avoir de haute concentration en ozone, et donc éviter de trop refroidir le milieu réactionnel, ce qui a pour effet d'augmenter la solubilité de l'ozone dans le solvant (voire de liquéfier l'ozone, ce qui provoquerait une explosion). C'est le craquelage d'élastomères par l'ozone, qui même à l'état de traces dans une atmosphère (urbaine ou industrielle notamment) va attaquer et casser certaines liaisons chimiques qui permettaient la cohésion d'élastomères sensibles, dont le caoutchouc naturel (latex polymérisé), le polybutadiène, styrène-butadiène et le caoutchouc nitrile.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CH-234: Organic functions and reactions II
To develop basic understanding of the reactivity of aromatic and heteroaromatic compounds. To develop a knowledge of a class of pericyclic reactions. To apply them in the context of the synthesis.
Séances de cours associées (16)
Synthèse totale du discodermolide
Couvre la synthèse totale de Discodermolide, en se concentrant sur les étapes clés.
Mécanisme d'hydrogénation
Plonge dans le mécanisme de réaction détaillé de l'hydrogénation, en mettant l'accent sur le catalyseur de Wilkinson et l'impact de la conception du ligand.
La chimie du thé : Polyphénols et effets sur la santé
Explore la chimie du thé, des polyphénols, des effets sur la santé, l'ajout de réactifs électrophiles aux alkènes et l'ajout anti-Markovnikov.
Afficher plus
Publications associées (33)
Personnes associées (2)
Concepts associés (16)
Ozone cracking
Cracks can be formed in many different elastomers by ozone attack, and the characteristic form of attack of vulnerable rubbers is known as ozone cracking. The problem was formerly very common, especially in tires, but is now rarely seen in those products owing to preventive measures. However, it does occur in many other safety-critical items such as fuel lines and rubber seals, such as gaskets and O-rings, where ozone attack is considered unlikely. Only a trace amount of the gas is needed to initiate cracking, and so these items can also succumb to the problem.
Dicarbonyl
In organic chemistry, a dicarbonyl is a molecule containing two carbonyl () groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own.
Oxydoréduction en chimie organique
Les réactions d'oxydoréduction sont d'une importance capitale en chimie organique. Néanmoins, la structure des composés rend l'approche assez différente de ce que l'on observe en chimie inorganique ou en électrochimie notamment parce que les principes d'oxydoréduction traitent plutôt, dans ces deux derniers cas, de composés ioniques ; les liaisons chimiques dans une structure organique sont essentiellement covalentes, les réactions d'oxydoréduction organiques ne présentent donc pas de transfert d’électron dans le sens électrochimique du terme.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.