En mathématiques, un groupe parfait G est un groupe quasi-simple si le groupe de ses automorphismes intérieurs est simple. En d'autres termes, s'il existe une suite exacte courte :
où S est un groupe simple.
Les groupes simples non abéliens sont quasi-simples.
Les recouvrements du groupe alterné sont quasi-simples mais non simples, pour .
Les sous-groupes normaux propres d'un groupe quasi-simple sont contenus dans son centre.
Tout endomorphisme non trivial d'un groupe fini quasi-simple est un automorphisme.
La classification des groupes finis quasi-simples a été obtenue à partir de la classification des groupes finis simples et du calcul de leur multiplicateur de Schur. Leur intérêt tient en grande partie au fait que les sous-groupes sous-normaux quasi-simples d'un groupe fini non résoluble G jouent pour sa structure un rôle similaire à celui des sous-groupes normaux minimaux d'un groupe fini résoluble ; on les appelle composantes du groupe G. Les composantes de G commutent deux à deux et engendrent donc un sous-groupe E(G), qui est une extension centrale parfaite d'un produit de groupes simples. C'est le plus grand sous-groupe normal de G possédant cette structure. Lorsque G est résoluble, le sous-groupe de Fitting F(G) joue un rôle important dans la partie de la théorie des groupes finis appelée analyse locale. Lorsque G n'est pas résoluble, ce rôle est tenu par le groupe de Fitting généralisé, qui est le sous-groupe F*(G) = F(G)E(G). Le groupe F*(G) est le concept clé pour la théorie de la structure des groupes finis.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, plus précisément en théorie des groupes, le multiplicateur de Schur est le deuxième groupe d'homologie d'un groupe G à coefficients entiers, Si le groupe est présenté en termes d'un groupe libre F sur un ensemble de générateurs, et d'un sous-groupe normal R engendré par un ensemble de relations sur les générateurs, de sorte que alors, par la formule d'homologie entière de Hopf, le multiplicateur de Schur est isomorphe à où [A, B] est le sous-groupe engendré par les commutateurs abab pour a
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
En théorie des groupes (mathématiques), un groupe est dit parfait s'il est égal à son dérivé. Dans ce qui suit, le dérivé d'un groupe G sera noté D(G). Si un groupe G est parfait, l'image de G par un homomorphisme est un groupe parfait. En particulier, tout groupe quotient d'un groupe parfait est parfait.En effet, si f est un homomorphisme d'un groupe G (quelconque) dans un autre groupe, on a toujours D(f(G)) = f(D(G)). Si un groupe parfait G est sous-groupe d'un groupe H, il est contenu dans le dérivé de H.
The course focuses on mathematical models based on PDEs with random parameters, and presents numerical techniques for forward uncertainty propagation, inverse uncertainty analysis in a Bayesian framew
Let G be the homeomorphism group of a dendrite. We study the normal subgroups of G. For instance, there are uncountably many nonisomorphic such groups G that are simple groups. Moreover, these groups can be chosen so that any isometric G-action on any metr ...
We classify simple groups that act by birational transformations on compact complex Kahler surfaces. Moreover, we show that every finitely generated simple group that acts non-trivially by birational transformations on a projective surface over an arbitrar ...
2020
,
It is a well-known open problem since the 1970s whether a finitely generated perfect group can be normally generated by a single element or not. We prove that the topological version of this problem has an affirmative answer as long as we exclude infinite ...