In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
A key challenge across many disciplines is to extract meaningful information from data which is often obscured by noise. These datasets are typically represented as large matrices. Given the current trend of ever-increasing data volumes, with datasets grow ...
Given a family of nearly commuting symmetric matrices, we consider the task of computing an orthogonal matrix that nearly diagonalizes every matrix in the family. In this paper, we propose and analyze randomized joint diagonalization (RJD) for performing t ...
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of operat ...
We consider the problem of learning a target function corresponding to a deep, extensive-width, non-linear neural network with random Gaussian weights. We consider the asymptotic limit where the number of samples, the input dimension and the network width ...
Electric vehicle charging facilities offer their capacity constrained electric charge and parking to users for a fee. As electric vehicle adoption grows, so too does the potential for excessive resource utilization. In this paper, we study how prices set b ...
Random spin models play a key role in our understanding of disorder and complex many-body systems. Two all-to-all interacting, disordered models have now been realized using a cavity quantum electrodynamics platform. ...
This thesis studies the origins and consequences of financial crises, and computational techniques to solve continuous-time economic models that explain such crises.The first chapter shows that financial recessions are typically characterised by a large ...
In this paper we analyze the spectral level statistics of the one-dimensional ionic Hubbard model, the Hubbard model with an alternating on-site potential. In particular, we focus on the statistics of the gap ratios between consecutive energy levels. This ...