L'advection est le transport d'une quantité (scalaire ou vectorielle) d'un élément donné (tel que la chaleur, l'énergie interne, un élément chimique, des charges électriques) par le mouvement (et donc la vitesse) du milieu environnant. C'est une notion courante en mécanique des fluides car toutes les caractéristiques d'une particule fluide sont advectées lors de son déplacement au sein de l'écoulement. Dans l'équation de Navier-Stokes, l'advection du vecteur vitesse apparaît dans le terme d'inertie, qui correspond à l'advection de la quantité de mouvement. En météorologie et en océanographie, l'advection se réfère surtout au transport horizontal de certaines propriétés par les fluides considérés, dont le transport par le vent ou les courants : advection de vapeur d'eau, de chaleur, de salinité Le phénomène d'advection est entièrement codé dans l'équation de conservation. L'opérateur advection correspond au produit scalaire du vecteur vitesse par le vecteur gradient (Nabla) , en coordonnées cartésiennes. où sont les composantes de la vitesse selon les coordonnées . Cet opérateur est ensuite appliqué à la propriété considérée. Par exemple, l'advection du vecteur vitesse est exprimée par : L'advection d'une quantité vectorielle équivaut donc à appliquer l'opérateur advection sur chacune des trois composantes du vecteur, dans le cas de la vitesse : advection de la composante : advection de la composante : advection de la composante : Si on considère que la répartition verticale des pressions est hydrostatique, c'est-à-dire que : alors, on peut remplacer la coordonnée par la pression : où est le déplacement vertical en coordonnées de pression ; est la pression ; est la masse volumique du fluide ; est l'accélération terrestre. et avec , autrement dit, on a effectué le changement de variable , c'est-à-dire poser telle que . L'advection appliquée à la vitesse peut se décomposer sous la forme dite « de Lamb » : Cela se vérifie par le calcul. On peut alors définir : le vecteur , dénommé vecteur vorticité.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.