La notion d'hyperfonction, due à Mikio Satō, généralise celle de distribution (au sens de Schwartz). Les hyperfonctions sur la droite réelle se définissent comme différences des « valeurs au bord » sur l'axe réel de fonctions holomorphes; elles permettent de trouver des solutions non triviales à des équations différentielles linéaires dont la seule solution est nulle dans l'espace des distributions. L'espace des hyperfonctions est donc « plus gros » que celui des distributions; alors qu'une distribution est « localement d'ordre fini », une hyperfonction peut être « localement d'ordre infini » car elle est « localement » une fonctionnelle analytique (i.e., une forme linéaire continue sur un espace de fonctions analytiques). Un autre avantage est que le faisceau des hyperfonctions est « flasque » (c'est-à-dire que le morphisme de restriction d'un ouvert à un ouvert plus petit est surjectif), propriété qui n'est pas partagée par le faisceau des distributions. Enfin, les hyperfonctions sont des classes de cohomologie à coefficients dans le faisceau des fonctions analytiques; une telle interprétation cohomologique est tout à fait étrangère à la théorie des distributions, et elle explique que les hyperfonctions se prêtent mieux que les distributions à un traitement algébrique des équations différentielles et des équations aux dérivées partielles (« analyse algébrique »). À la suite des travaux de Satō, la théorie des hyperfonctions a été développée par plusieurs mathématiciens, parmi lesquels on peut citer Komatsu , Martineau, Harvey et Schapira. Elle a donné lieu à plusieurs ouvrages didactiques développant des points de vue différents . Le présent article reprend dans ses grandes lignes, avec quelques compléments, la présentation d'un ouvrage qui expose, entre autres, l'application des hyperfonctions à la théorie des systèmes linéaires (au sens de l'automatique). Soit un ouvert de la droite réelle. Un voisinage complexe de se définit comme étant un ouvert U du plan complexe qui est relativement fermé dans , c'est-à-dire dont l'intersection avec l'axe réel est .
Thomas Marie Jean-Baptiste Humeau