Concept

Classical electromagnetism and special relativity

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electric or magnetic laws. It motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form. Maxwell's equations, when they were first stated in their complete form in 1865, would turn out to be compatible with special relativity. Moreover, the apparent coincidences in which the same effect was observed due to different physical phenomena by two different observers would be shown to be not coincidental in the least by special relativity. In fact, half of Einstein's 1905 first paper on special relativity, "On the Electrodynamics of Moving Bodies," explains how to transform Maxwell's equations. This equation considers two inertial frames. The primed frame is moving relative to the unprimed frame at velocity v. Fields defined in the primed frame are indicated by primes, and fields defined in the unprimed frame lack primes. The field components parallel to the velocity v are denoted by and while the field components perpendicular to v are denoted as and . In these two frames moving at relative velocity v, the E-fields and B-fields are related by: where is called the Lorentz factor and c is the speed of light in free space. The equations above are in SI. In CGS these equations can be derived by replacing with , and with , except . Lorentz factor () is the same in both systems. The inverse transformations are the same except v → −v. An equivalent, alternative expression is: where is the velocity unit vector. With previous notations, one actually has and .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
PHYS-470: Nonlinear optics for quantum technologies
This course provides the fundamental knowledge and theoretical tools needed to treat nonlinear optical interactions, covering both classical and quantum theory of nonlinear optics. It presents applica
PHYS-201(e): General physics: electromagnetism
Introduction to electromagnetism.
MICRO-606: Scaling in MEMS
This doctoral class covers the scaling of MEMS devices, including mechanical, thermal, electrostatic, electromagnetic, and microfluidic aspects.
Afficher plus
Séances de cours associées (7)
Electromagnétisme Vue d'ensemble
Couvre la force électromagnétique, les équations de Maxwell et la dynamique classique des champs électromagnétiques.
Champs électromagnétiques en milieu
Explore les champs électromagnétiques dans un milieu, en se concentrant sur les champs macroscopiques et microscopiques et leurs sources.
Tenseurs covariants et contravariants: Maxwell Field Strength
Explore les tenseurs contravariants et covariants, la force de champ de Maxwell et l'invariance de Lorentz dans les transformations linéaires et les propriétés métriques.
Afficher plus
Publications associées (6)

Covariant formulation of relativistic mechanics

Miguel Alexandre Ribeiro Correia

Accretion disks surrounding compact objects, and other environmental factors, deviate satellites from geodetic motion. Unfortunately, setting up the equations of motion for such relativistic trajectories is not as simple as in Newtonian mechanics. The prin ...
AMER PHYSICAL SOC2022

A New Engineering Model of Lightning M Component That Reproduces Its Electric Field Waveforms at Both Close and Far Distances

Marcos Rubinstein, Mohammad Azadifar, Qi Li

We present a new engineering model for the M component mode of charge transfer to ground that can predict the observed electric field signatures associated with this process at various distances, including (a) the microsecond-scale pulse thought to be due ...
2019

Characteristics of Upward Lightning Flashes

Mohammad Azadifar

In addition to the general aims of lightning research such as lightning physics and meteorology, the study of upward lightning is of particular importance in protection of tall objects such as wind turbines and telecommunication towers. It also helps us in ...
EPFL2018
Afficher plus
Concepts associés (4)
Mécanique quantique relativiste
En physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Mathematical descriptions of the electromagnetic field
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Classical electromagnetism The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field.
Electromagnetic stress–energy tensor
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.