Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field. These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations). Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor . (A field is described by a Lagrangian, varying with respect to the field should give the field equations and varying with respect to the metric should give the stress-energy contribution due to the field.) Finally, when all the contributions to the stress–energy tensor are added up, the result must be a solution of the Einstein field equations In the above field equations, is the Einstein tensor, computed uniquely from the metric tensor which is part of the definition of a Lorentzian manifold. Since giving the Einstein tensor does not fully determine the Riemann tensor, but leaves the Weyl tensor unspecified (see the Ricci decomposition), the Einstein equation may be considered a kind of compatibility condition: the spacetime geometry must be consistent with the amount and motion of any matter or non-gravitational fields, in the sense that the immediate presence "here and now" of non-gravitational energy–momentum causes a proportional amount of Ricci curvature "here and now". Moreover, taking covariant derivatives of the field equations and applying the Bianchi identities, it is found that a suitably varying amount/motion of non-gravitational energy–momentum can cause ripples in curvature to propagate as gravitational radiation, even across vacuum regions, which contain no matter or non-gravitational fields.
Jan Van Herle, Emadeddin Oveisi, Hossein Pourrahmani, Hamza Moussaoui