Résumé
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field. These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations). Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor . (A field is described by a Lagrangian, varying with respect to the field should give the field equations and varying with respect to the metric should give the stress-energy contribution due to the field.) Finally, when all the contributions to the stress–energy tensor are added up, the result must be a solution of the Einstein field equations In the above field equations, is the Einstein tensor, computed uniquely from the metric tensor which is part of the definition of a Lorentzian manifold. Since giving the Einstein tensor does not fully determine the Riemann tensor, but leaves the Weyl tensor unspecified (see the Ricci decomposition), the Einstein equation may be considered a kind of compatibility condition: the spacetime geometry must be consistent with the amount and motion of any matter or non-gravitational fields, in the sense that the immediate presence "here and now" of non-gravitational energy–momentum causes a proportional amount of Ricci curvature "here and now". Moreover, taking covariant derivatives of the field equations and applying the Bianchi identities, it is found that a suitably varying amount/motion of non-gravitational energy–momentum can cause ripples in curvature to propagate as gravitational radiation, even across vacuum regions, which contain no matter or non-gravitational fields.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.