Raisonnement automatisévignette|Visualisation commune du réseau de neurones artificiels avec puce NOTOC Le raisonnement automatisé est un domaine de l'informatique consacré à la compréhension des différents aspects du raisonnement de manière à permettre la création de logiciels qui permettraient aux ordinateurs de « raisonner » de manière automatique, ou presque. Il est considéré habituellement comme un sous-domaine de l'intelligence artificielle, mais possède aussi de fortes connexions avec l'Informatique théorique et même avec la philosophie.
Cadre (intelligence artificielle)Le terme de cadres (en anglais frames) a été proposé par Marvin Minsky dans son article de 1974 intitulé A Framework for Representing Knowledge. Un cadre en intelligence artificielle est une structure de données utilisée pour subdiviser la connaissance en sous-structures représentant des situations stéréotypées. Les cadres sont reliés entre eux pour former une idée complète. Un cadre contient de l'information sur la manière d'utiliser le cadre, sur ce qu'on peut en attendre, et sur ce qu'on peut faire lorsque cette attente n'est pas satisfaite.
Programmation logiqueLa programmation logique est une forme de programmation qui définit les applications à l'aide : d'une base de faits : ensemble de faits élémentaires concernant le domaine visé par l'application, d'une base de règles : règles de logique associant des conséquences plus ou moins directes à ces faits, d'un moteur d'inférence (ou démonstrateur de théorème ) : exploite ces faits et ces règles en réaction à une question ou requête. Cette approche se révèle beaucoup plus souple que la définition d'une succession d'instructions que l'ordinateur exécuterait.
Knowledge-based systemsA knowledge-based system (KBS) is a computer program that reasons and uses a knowledge base to solve complex problems. The term is broad and refers to many different kinds of systems. The one common theme that unites all knowledge based systems is an attempt to represent knowledge explicitly and a reasoning system that allows it to derive new knowledge. Thus, a knowledge-based system has two distinguishing features: a knowledge base and an inference engine.
Ontology languageIn computer science and artificial intelligence, ontology languages are formal languages used to construct ontologies. They allow the encoding of knowledge about specific domains and often include reasoning rules that support the processing of that knowledge. Ontology languages are usually declarative languages, are almost always generalizations of frame languages, and are commonly based on either first-order logic or on description logic.
Graphe conceptuelUn graphe conceptuel est un formalisme de représentation de connaissances et de raisonnements. Ce formalisme a été introduit par en 1984. Depuis cette date, ce formalisme a été développé suivant trois directions principales : interface graphique de la logique du premier ordre, système diagrammatique pour la logique du premier ordre, formalisme de représentation de connaissances et de raisonnement basé sur les graphes. Dans cette approche les graphes conceptuels servent d'interface graphique pour la logique du premier ordre (calcul des prédicats).
Semantic technologyThe ultimate goal of semantic technology is to help machines understand data. To enable the encoding of semantics with the data, well-known technologies are RDF (Resource Description Framework) and OWL (Web Ontology Language). These technologies formally represent the meaning involved in information. For example, ontology can describe concepts, relationships between things, and categories of things. These embedded semantics with the data offer significant advantages such as reasoning over data and dealing with heterogeneous data sources.
Graphe de connaissancesDans le domaine de la représentation des connaissances, un graphe de connaissances (knowledge graph en anglais) est une base de connaissance modélisant les données sous forme de représentation graphique. Depuis le développement du web sémantique, les graphes de connaissances sont souvent associés aux projets de données ouvertes du web des données, visant surtout à connecter les concepts et entités. Ils sont fortement liés aux et utilisés par les moteurs de recherches, dont certains, tels Google, ont développé leur propre graphe de connaissances.
Logique de descriptionLes logiques de description aussi appelées logiques descriptives (LD) sont une famille de langages de représentation de connaissance qui peuvent être utilisés pour représenter la connaissance terminologique d'un domaine d'application d'une manière formelle et structurée. Le nom de logique de description se rapporte, d'une part à la description de concepts utilisée pour décrire un domaine et d'autre part à la sémantique basée sur la logique qui peut être donnée par une transcription en logique des prédicats du premier ordre.
Chaînage avantLe chaînage avant est une méthode de déduction qui applique des règles en partant des prémisses pour en déduire de nouvelles conclusions. Ces conclusions enrichissent la mémoire de travail et peuvent devenir les prémisses d'autres règles. Par opposition, le chaînage arrière part des conclusions pour essayer de « remonter » aux axiomes. Le chaînage avant est utilisé en intelligence artificielle, dans un système expert à base de règles, dans un moteur de règles, ou encore dans un système de production.