In physics, there are four observed fundamental interactions (also known as fundamental forces) that form the basis of all known interactions in nature: gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Some speculative theories have proposed a fifth force to explain various anomalous observations that do not fit existing theories. The characteristics of this fifth force depend on the hypothesis being advanced. Many postulate a force roughly the strength of gravity (i.e., it is much weaker than electromagnetism or the nuclear forces) with a range of anywhere from less than a millimeter to cosmological scales. Another proposal is a new weak force mediated by W′ and Z′ bosons.
The search for a fifth force has increased in recent decades due to two discoveries in cosmology which are not explained by current theories. It has been discovered that most of the mass of the universe is accounted for by an unknown form of matter called dark matter. Most physicists believe that dark matter consists of new, undiscovered subatomic particles, but some believe that it could be related to an unknown fundamental force. Second, it has also recently been discovered that the expansion of the universe is accelerating, which has been attributed to a form of energy called dark energy. Some physicists speculate that a form of dark energy called quintessence could be a fifth force.
A new fundamental force might be difficult to test. Gravity, for example, is such a weak force that the gravitational interaction between two objects is only significant when at least one of them has a great mass. Therefore, it takes very sensitive equipment to measure gravitational interactions between objects that are small compared to the Earth. A new (or "fifth") fundamental force might similarly be weak and therefore difficult to detect. Nonetheless, in the late 1980s a fifth force, operating on municipal scales (i.e. with a range of about 100 meters), was reported by researchers (Fischbach et al.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The Eötvös experiment was a famous physics experiment that measured the correlation between inertial mass and gravitational mass, demonstrating that the two were one and the same, something that had long been suspected but never demonstrated with the same accuracy. The earliest experiments were done by Isaac Newton (1642–1727) and improved upon by Friedrich Wilhelm Bessel (1784–1846). A much more accurate experiment using a torsion balance was carried out by Loránd Eötvös starting around 1885, with further improvements in a lengthy run between 1906 and 1909.
On énumère en général trois principes d'équivalence : le principe « faible », celui d'Einstein et le principe « fort ». Le premier est le constat de l'égalité entre la masse inertielle et la masse gravitationnelle. Albert Einstein présente le second comme une « interprétation » du premier en termes d'équivalence locale entre la gravitation et l'accélération (elles sont localement indistinguables) ; c'est un élément clé de la construction de la relativité générale.
vignette|redresse=1.1|Répartition de la densité d'énergie de l'Univers après exploitation des premières données obtenues par le satellite Planck. L'énergie noire en serait la composante principale. En cosmologie, lénergie noire ou énergie sombre (dark energy) est une forme d'énergie hypothétique remplissant uniformément tout l'Univers et dotée d'une pression négative, elle se comporte comme une force gravitationnelle répulsive.
Discute de la définition des tenseurs, de la dimensionnalité espace-temps et des défis dans la formulation d'une théorie relativiste de la gravité.
A clear picture has emerged from the last three decades of research: our Universe is expanding at an accelerated rate. The cause of this expansion remains elusive, but in essence acts as a repulsive force. This so-called dark energy represents about 69% of ...
In the absence of a full analytical treatment of nonlinear structure formation in the universe, numerical simulations provide the critical link between the properties of the underlying model and the features of the observed structures. Currently N-body sim ...
We study the general class of gravitational field theories constructed on the basis of scale invariance (and therefore absence of any mass parameters) and invariance under transverse diffeomorphisms, which are the 4-volume conserving coordinate transformat ...