Cours associés (10)
EE-612: Fundamentals in statistical pattern recognition
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
PHYS-231: Data analysis for Physics
Ce cours présentera les bases de l'analyse des données et de l'apprentissage à partir des données, l'estimation des erreurs et la stochasticité en physique. Les concepts seront introduits théoriquemen
MATH-412: Statistical machine learning
A course on statistical machine learning for supervised and unsupervised learning
BIO-322: Introduction to machine learning for bioengineers
Students understand basic concepts and methods of machine learning. They can describe them in mathematical terms and can apply them to data using a high-level programming language (julia/python/R).
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
MATH-341: Linear models
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
CS-233(a): Introduction to machine learning (BA3)
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
MATH-685: Learning Theory of Nonparametric Regression
This course is intended to give a brief overview of how to prove consistency results in nonparametric regression. In particular, we will focus on least-square regression estimators. Some connections t

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.