Partial cubeIn graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels.
Hypercube (graphe)Les hypercubes, ou n-cubes, forment une famille de graphes. Dans un hypercube , chaque sommet porte une étiquette de longueur sur un alphabet , et deux sommets sont adjacents si leurs étiquettes ne diffèrent que d'un symbole. C'est le graphe squelette de l'hypercube, un polytope n-dimensionnel, généralisant la notion de carré (n = 2) et de cube (n = 3). Dans les années 1980, des ordinateurs furent réalisés avec plusieurs processeurs connectés selon un hypercube : chaque processeur traite une partie des données et ainsi les données sont traitées par plusieurs processeurs à la fois, ce qui constitue un calcul parallèle.
SquaregraphIn graph theory, a branch of mathematics, a squaregraph is a type of undirected graph that can be drawn in the plane in such a way that every bounded face is a quadrilateral and every vertex with three or fewer neighbors is incident to an unbounded face. The squaregraphs include as special cases trees, grid graphs, gear graphs, and the graphs of polyominos. As well as being planar graphs, squaregraphs are median graphs, meaning that for every three vertices u, v, and w there is a unique median vertex m(u,v,w) that lies on shortest paths between each pair of the three vertices.
Simplex graphIn graph theory, a branch of mathematics, the simplex graph κ(G) of an undirected graph G is itself a graph, with one node for each clique (a set of mutually adjacent vertices) in G. Two nodes of κ(G) are linked by an edge whenever the corresponding two cliques differ in the presence or absence of a single vertex. The empty set is included as one of the cliques of G that are used to form the clique graph, as is every set of one vertex and every set of two adjacent vertices.
Produit cartésien (graphe)Le produit cartésien, ou somme cartésienne, est une opération sur deux graphes et résultant en un graphe . Parler de produit ou de somme pour cette opération n'est pas une contradiction, mais une explication basée sur deux aspects différents : la construction peut se voir comme un produit, tandis que de nombreuses propriétés sont basées sur la somme. Soient deux graphes et . Le produit cartésien est défini comme suit : Autrement dit, l'ensemble résultant des sommets est le produit cartésien .
Fibonacci cubeIn the mathematical field of graph theory, the Fibonacci cubes or Fibonacci networks are a family of undirected graphs with rich recursive properties derived from its origin in number theory. Mathematically they are similar to the hypercube graphs, but with a Fibonacci number of vertices. Fibonacci cubes were first explicitly defined in in the context of interconnection topologies for connecting parallel or distributed systems. They have also been applied in chemical graph theory.
Clique (théorie des graphes)thumb|Exemple de graphe possédant une 3-clique (en rouge) : les trois sommets de ce sous-graphe sont tous adjacents deux-à-deux. thumb|Exemple de « biclique » : le graphe biparti complet K3,3. Une clique d'un graphe non orienté est, en théorie des graphes, un sous-ensemble des sommets de ce graphe dont le sous-graphe induit est complet, c'est-à-dire que deux sommets quelconques de la clique sont toujours adjacents. Une clique maximum d'un graphe est une clique dont le cardinal est le plus grand (c'est-à-dire qu'elle possède le plus grand nombre de sommets).
Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.