In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis. Ray tracing solves the problem by repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays.
When applied to problems of electromagnetic radiation, ray tracing often relies on approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray theory does not describe phenomena such as interference and diffraction, which require wave theory (involving the phase of the wave).
Ray tracing works by assuming that the particle or wave can be modeled as a large number of very narrow beams (rays), and that there exists some distance, possibly very small, over which such a ray is locally straight. The ray tracer will advance the ray over this distance, and then use a local derivative of the medium to calculate the ray's new direction. From this location, a new ray is sent out and the process is repeated until a complete path is generated. If the simulation includes solid objects, the ray may be tested for intersection with them at each step, making adjustments to the ray's direction if a collision is found. Other properties of the ray may be altered as the simulation advances as well, such as intensity, wavelength, or polarization. This process is repeated with as many rays as are necessary to understand the behavior of the system.
Ray tracing is being increasingly used in astronomy to simulate realistic images of the sky.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to 0ptical imaging systems such as camera objectives and microscopes. Discussion of imaging formation. Principles of design of imaging optics with geometrical optics and analysis with ray
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
L'approximation de Gauss nommée d'après le physicien allemand Carl Friedrich Gauss, est l'approximation linéaire de l'optique géométrique obtenue dans certaines conditions appelées conditions de Gauss. Cette approximation, souvent applicable en pratique, permet de simplifier les relations mathématiques de l'optique géométrique. On obtient dans ces conditions un stigmatisme approché. Les écarts à cette approximation rencontrés dans les instruments d'optique sont appelés aberrations géométriques.
thumb|300px|upright=2|Exemple géométrique comportant une lentille mince convergente. L'objet AB a pour image A'B'. Une lentille mince est une lentille dont l'épaisseur reste faible devant les rayons de courbure de ses faces ainsi que devant la différence de ces rayons, contrairement aux lentilles épaisses. Dans le cas de la lentille mince, les distances du plan focal objet au centre optique () et du centre optique au plan focal image (), telles qu'indiqué sur la figure, sont égales. est la distance focale image de la lentille.
La conception optique est un domaine de l'ingénierie optique dont le but est de créer, optimiser et produire des systèmes optiques comme des objectifs, des viseurs, des télescopes, des microscopes, etc. La conception optique repose essentiellement sur les lois de l'optique géométrique et sur la radiométrie. La conception optique recouvrant tout le processus d'élaboration d'un système optique, c'est un champ de l'optique qui est né dès la création des premiers systèmes optiques.
The present work deals with monochromatic wavefront aberrations in optical systems without symmetries. The treatment begins with a class of systems characterized by misaligned spherical surfaces whose behavior is analyzed using the wavefront aberration exp ...
A multi-machine study has been carried out to investigate the impact of a strongly bounded wave propagation domain on the Lower Hybrid current drive, a condition which occurs principally in high aspect ratio tokamaks. In this regime, the condition of kinet ...
SPRINGER2020
, ,
To overcome the multipath interference in locating transient electromagnetic (EM) radiation sources in an indoor environment, we propose a criterion that calculates the correlation between back-propagated signals from observation points, to be used in EM t ...