Résumé
La loi de Poiseuille, également appelée loi de Hagen-Poiseuille, décrit l'écoulement laminaire (c'est-à-dire à filets de liquide parallèles) d'un liquide visqueux, incompressible, dans une conduite cylindrique. Découverte indépendamment en 1840 par le médecin et physicien français Jean-Léonard-Marie Poiseuille et par l’ingénieur prussien Gotthilf Hagen, elle constitue la première tentative de dépasser la notion de vitesse moyenne d'un écoulement, jusque-là en usage (cf. formules de Chézy et de Prony). Un écoulement de Poiseuille est un écoulement qui suit une loi de Poiseuille. De manière générale, la loi de Poiseuille énonce de façon théorique la relation entre le débit volumique d'un écoulement et la viscosité du fluide , la différence de pression aux extrémités de la canalisation (notée ), la longueur et le rayon de cette canalisation. Cette relation est vérifiée expérimentalement dans les canalisations de rayons faibles et est souvent utilisée dans les viscosimètres car elle énonce notamment que le débit est inversement proportionnel à la viscosité. Pour un écoulement dans un tuyau de rayon et de longueur , elle s'exprime : Le principe fondamental est le sens de la grandeur nommée viscosité. Un « fluide » dans un tube de dentifrice est plus visqueux que de l'huile d'olive qui est plus visqueuse que de l'eau. On peut dire « plus » ou « moins » mais en physique, on exprime cela de manière mathématique par des équations avec des quantités comme « viscosité » que l'on notera ci-dessous avec une seule lettre en grec: η. Tout le développement « académique » ci-dessous indiquera que la vitesse d'écoulement au centre est proportionnelle à l'inverse de la viscosité (pour ces cas très simples). Il faut retenir que la viscosité est une grandeur qui est un produit entre une pression et un temps (le Poiseuille). C'est une grandeur qui associe une grandeur dynamique (le temps, un déplacement) et une pression mécanique (une force appliquée sur une surface, exprimée en pascals, noté Pa ou en newtons par mètre carré noté ).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (22)
ChE-330: Fluid mechanics and transport phenomena
The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are given. These relations are applied to model systems. Integral
CIVIL-427: Flow monitoring technology in water engineering
This course aims to provide theoretical fundamentals in flow measurement science, and advanced knowledge regarding measurement methods, tools and instrumentation applied to experimental hydraulics, in
ME-444: Hydrodynamics
Nondimensionalized Navier-Stokes equations result in a great variety of models (Stokes, Lubrication, Euler, Potential) depending on the Reynolds number. The concept of boundary layer enables us then t
Afficher plus
Publications associées (203)